1 / 26

Physics of Theatre Project Center of Mass or Why Personnel Lifts Stand Up and Why They Fall Down

Physics of Theatre Project Center of Mass or Why Personnel Lifts Stand Up and Why They Fall Down. Who We Are. Verda Beth Martell, MFA Opera Technical Director Krannert Center for the Performing Arts Assistant Professor of Theatre University of Illinois at Urbana-Champaign.

Download Presentation

Physics of Theatre Project Center of Mass or Why Personnel Lifts Stand Up and Why They Fall Down

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physics of Theatre ProjectCenter of Massor Why Personnel Lifts Stand Upand Why They Fall Down

  2. Who We Are Verda Beth Martell, MFA Opera Technical Director Krannert Center for the Performing Arts Assistant Professor of Theatre University of Illinois at Urbana-Champaign Eric C. Martell, PhD Associate Professor and Chair of Physics and Astronomy Millikin University, Decatur IL Technical Director Physicist

  3. What We’ll Talk About • What makes something stable. • Many techniques to find the center of mass/gravity for an object. • Lots of ways to fall off of ladders. • Why you should use your outriggers. • How dynamic movement figures into stability. • Why the footer should not be the kid who is easily distracted.

  4. How? • Math • A little more intensive than past sessions. We will post this PowerPoint on our website (Google “Physics of Theatre”) and on the USITT app. • Demos • Meet Ernesto – He has balance issues. • Graphics • We’ve generated a few AutoCAD drawings to illustrate our models.

  5. It’s about Stability • Stability is a simple thing. • If the center of mass is over the base, it is stable. • If the center of mass is not over the base, it is unstable.

  6. What is the Center of Mass • The point where half the mass is in front, half behind, half above, half below, half to the left, and half to the right. • “Average” position of all the mass. • Does not need to be a point that’s part of the object – consider a donut. • Center of Mass vs. Center of Gravity

  7. Finding the Center of Mass

  8. Example – Finding CM • Center of Mass of a flat

  9. Example – Finding CM • Break the flat up into rectangular sections, each with a readily identifiable CM:

  10. Example – Finding CM • Make a table of the x and y coordinates and weights/masses of each piece (using an average weight density of 1.1 lb/ft2 for ¼” lauan on a 1x3 pine frame).

  11. Example - Calculations

  12. Example – Checking Results • We found xCM=7.4 ft and yCM=4.1 ft. • Actual center of flat

  13. Using Excel

  14. VectorWorks

  15. No Party in the Genie

  16. Hanging Method • Only works for Homogenous materials. • Cut out the profile. • Hang from a point and draw a line straight down. • Hang from a different point. Draw a line straight down. • Where the lines cross is the center of mass.

  17. Dynamic Loads • As performers, stagehands, etc, move around on scenery, Newton’s 3rd Law tells us that whatever forces it applies to them (support, helping them walk/run, helping them stop), they apply back to it. • Those forces cause torques, which can cause objects to tilt, and if strong enough, tip over. • When we’re concerned: when the torques caused by the dynamic loads are larger than the “stabilizing” torques holding object in place (gravity, screws/bolts…).

  18. Dynamic Loads • What kind of forces are we talking about? • If a person is moving at initial speed v, and they stop in a time interval t, they will have an acceleration of a=v/t. The force needed to stop them will have magnitude F=ma, or F=mv/t. • These forces can be as large or larger than the weight of the person. • What effect can these forces have? • Spreadsheet

  19. What can you do to increase stability? • Widen the base. • Add outriggers • Make the whole object larger • Effectively widen the base or resist the toppling force • Guy wires • Stairs • Make the base heavier to lower the combined center of gravity • Person on ladder base • Hang sandbags • Add stageweights • Restrict the movement of the object or of people climbing on the object. • Railings • Harnesses • 3 points of contact • Tie into another object • Trap your movable object between other objects.

  20. Dynamic Loads - Wagons • Let’s say you’ve got something moving on a wagon (great-grandma’s haunted antique armoire) which travels onstage and then comes to a stop. If stopped too suddenly, it can tip (just like you on a train). • What causes it to tip? Newton’s 1st Law of Motion – An object in motion will remain in motion until acted upon by an outside force. In this case, there is an outside force – the friction between the base of the armoire and the wagon.

  21. Dynamic Loads - Example • Can pivot around front corner. • How big can a be without tipping? • Left end of base cannot lift off wagon. a v fs

  22. Dynamic Loads - Example FN fs Fg (acts at CM) • When accelerating, FN no longer acts at center – position depends on acceleration. • If it doesn’t tip, net torque=0 (around CM).

  23. Dynamic Loads - Example FN fs Fg (acts at CM) • Torque = Force*Lever Arm (t=rFsinq) • For weight, lever arm=0, torque=0.

  24. Dynamic Loads - Example FN rs rN fs • ts=fs*rs • tN=FN*rN • If it’s not tipping, ts=tN • FN=mg • fs=ma • rs= height of CM=yCM • rN=horizontal distance from CM

  25. Dynamic Loads - Example FN xCM rs yCM rN fs • If it’s not tipping, ts=tN • ma(rs)=mg(rN) • Furthest over FN can shift: the far right edge (rN=xCM). • a=(xCM/yCM)*g • If a is bigger than this, it will tip!

  26. Walking up a flat

More Related