1 / 32

Spatial Queries

Spatial Queries. Spatial Queries. Given a collection of geometric objects (points, lines, polygons, ...) organize them on disk, to answer efficiently point queries range queries k-nn queries spatial joins (‘all pairs’ queries). Spatial Queries.

johnodom
Download Presentation

Spatial Queries

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spatial Queries

  2. Spatial Queries • Given a collection of geometric objects (points, lines, polygons, ...) • organize them on disk, to answer efficiently • point queries • range queries • k-nn queries • spatial joins (‘all pairs’ queries)

  3. Spatial Queries • Given a collection of geometric objects (points, lines, polygons, ...) • organize them on disk, to answer • point queries • range queries • k-nn queries • spatial joins (‘all pairs’ queries)

  4. Spatial Queries • Given a collection of geometric objects (points, lines, polygons, ...) • organize them on disk, to answer • point queries • range queries • k-nn queries • spatial joins (‘all pairs’ queries)

  5. Spatial Queries • Given a collection of geometric objects (points, lines, polygons, ...) • organize them on disk, to answer • point queries • range queries • k-nn queries • spatial joins (‘all pairs’ queries)

  6. Spatial Queries • Given a collection of geometric objects (points, lines, polygons, ...) • organize them on disk, to answer • point queries • range queries • k-nn queries • spatial joins (‘all pairs’ queries)

  7. R-tree … 2 3 5 7 8 4 6 11 10 9 2 12 1 13 3 1

  8. R-trees - Range search pseudocode: check the root for each branch, if its MBR intersects the query rectangle apply range-search (or print out, if this is a leaf)

  9. P1 P3 I C A G H F B J q E P4 P2 D R-trees - NN search

  10. P1 P3 I C A G H F B J q E P4 P2 D R-trees - NN search • Q: How? (find near neighbor; refine...)

  11. R-trees - NN search • A1: depth-first search; then range query P1 I P3 C A G H F B J E P4 q P2 D

  12. R-trees - NN search • A1: depth-first search; then range query P1 P3 I C A G H F B J E P4 q P2 D

  13. R-trees - NN search • A1: depth-first search; then range query P1 P3 I C A G H F B J E P4 q P2 D

  14. R-trees - NN search: Branch and Bound • A2: [Roussopoulos+, sigmod95]: • At each node, priority queue, with promising MBRs, and their best and worst-case distance • main idea: Every face of any MBR contains at least one point of an actual spatial object!

  15. MBR face property • MBR is a d-dimensional rectangle, which is the minimal rectangle that fully encloses (bounds) an object (or a set of objects) • MBR f.p.: Every face of the MBR contains at least one point of some object in the database

  16. Search improvement • Visit an MBR (node) only when necessary • How to do pruning? Using MINDIST and MINMAXDIST

  17. MINDIST • MINDIST(P, R) is the minimum distance between a point P and a rectangle R • If the point is inside R, then MINDIST=0 • If P is outside of R, MINDIST is the distance of P to the closest point of R (one point of the perimeter)

  18. MINDIST computation • MINDIST(p,R) is the minimum distance between p and R with corner points l and u • the closest point in R is at least this distance away u=(u1, u2, …, ud) R u ri = li if pi < li = ui if pi > ui = pi otherwise p p MINDIST = 0 l p l=(l1, l2, …, ld)

  19. MINMAXDIST • MINMAXDIST(P,R): for each dimension, find the closest face, compute the distance to the furthest point on this face and take the minimum of all these (d) distances • MINMAXDIST(P,R) is the smallest possible upper bound of distances from P to R • MINMAXDIST guarantees that there is at least one object in R with a distance to P smaller or equal to it.

  20. MINMAXDIST computation • MINMAXDIST(p,R) guarantees there is an object within the MBR at a distance less than or equal to MINMAXDIST • the closest point in R is less than this distance away u=(u1, u2, …, ud) R u rmk = uk if pk < ½(lk +uk) = lk otherwise; rMi = ui if pi > ½(li +ui) = li otherwise p MINDIST = 0 l l=(l1, l2, …, ld) p

  21. MINDIST and MINMAXDIST • MINDIST(P, R) <= NN(P) <=MINMAXDIST(P,R) MINMAXDIST R1 R4 R3 MINDIST MINDIST MINMAXDIST MINDIST MINMAXDIST R2

  22. Pruning in NN search • Downward pruning: An MBR R is discarded if there exists another R’ s.t. MINDIST(P,R)>MINMAXDIST(P,R’) • Downward pruning: An object O is discarded if there exists an R s.t. the Actual-Dist(P,O) > MINMAXDIST(P,R) • Upward pruning: An MBR R is discarded if an object O is found s.t. the MINDIST(P,R) > Actual-Dist(P,O)

  23. Pruning 1 example • Downward pruning: An MBR R is discarded if there exists another R’ s.t. MINDIST(P,R)>MINMAXDIST(P,R’) R R’ MINDIST MINMAXDIST

  24. Pruning 2 example • Downward pruning: An object O is discarded if there exists an R s.t. the Actual-Dist(P,O) > MINMAXDIST(P,R) R Actual-Dist O MINMAXDIST

  25. Pruning 3 example • Upward pruning: An MBR R is discarded if an object O is found s.t. the MINDIST(P,R) > Actual-Dist(P,O) R MINDIST Actual-Dist O

  26. Ordering Distance • MINDIST is an optimistic distance where MINMAXDIST is a pessimistic one. MINDIST P MINMAXDIST

  27. NN-search Algorithm • Initialize the nearest distance as infinite distance • Traverse the tree depth-first starting from the root. At each Index node, sort all MBRs using an ordering metric and put them in an Active Branch List (ABL). • Apply pruning rules 1 and 2 to ABL • Visit the MBRs from the ABL following the order until it is empty • If Leaf node, compute actual distances, compare with the best NN so far, update if necessary. • At the return from the recursion, use pruning rule 3 • When the ABL is empty, the NN search returns.

  28. K-NN search • Keep the sorted buffer of at most k current nearest neighbors • Pruning is done using the k-th distance

  29. Another NN search: Best-First • Global order [HS99] • Maintain distance to all entries in a common Priority Queue • Use only MINDIST • Repeat • Inspect the next MBR in the list • Add the children to the list and reorder • Until all remaining MBRs can be pruned

  30. 2 Nearest Neighbor Search (NN) with R-Trees • Best-first (BF) algorihm: y axis Root E 10 E 7 E E 3 1 2 E E e f 1 2 8 1 2 8 E E 8 E 2 g E d 1 5 6 i E E E E E E h E E 8 7 9 9 5 6 6 4 query point 2 13 17 5 9 contents 5 4 omitted E 4 search b a region i f h g e a c d 2 b c E 3 5 2 10 13 13 10 13 18 13 x axis E E E 10 0 8 8 2 4 6 4 5 Action Heap Result {empty} Visit Root E E E 1 2 8 1 2 3 E follow E E E {empty} E E 5 5 8 1 9 4 5 3 2 6 2 E E follow E E E E {empty} E E 17 13 5 5 8 2 9 9 7 4 5 3 2 6 8 E follow E E E E E {(h, )} E 17 13 8 5 8 9 5 9 7 4 5 3 6 g E i E E E E 13 10 5 8 7 5 9 4 5 3 13 6 Report h and terminate

  31. HS algorithm Initialize PQ (priority queue) InesrtQueue(PQ, Root) While not IsEmpty(PQ) R= Dequeue(PQ) If R is an object Report R and exit (done!) If R is a leaf page node For each O in R, compute the Actual-Dists, InsertQueue(PQ, O) If R is an index node For each MBR C, compute MINDIST, insert into PQ

  32. Best-First vs Branch and Bound • Best-First is the “optimal” algorithm in the sense that it visits all the necessary nodes and nothing more! • But needs to store a large Priority Queue in main memory. If PQ becomes large, we have thrashing… • BB uses small Lists for each node. Also uses MINMAXDIST to prune some entries

More Related