1 / 10

Stupid Bayesian Tricks

Stupid Bayesian Tricks. Gregory Lopez, MA, PharmD SkeptiCamp 2009. Outline. Bayesiwhat? Examining inductive arguments Examining a formal and informal fallacy An example of a conditional probabilistic fallacy. What’s Bayesian epistemology?.

joie
Download Presentation

Stupid Bayesian Tricks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stupid Bayesian Tricks Gregory Lopez, MA, PharmD SkeptiCamp 2009

  2. Outline • Bayesiwhat? • Examining inductive arguments • Examining a formal and informal fallacy • An example of a conditional probabilistic fallacy

  3. What’s Bayesian epistemology? • A (controversial) way to describe the relationship between evidence and hypotheses • Useful for induction and other instances of reasoning under uncertainty (probabilistically)

  4. What does Bayesianism tell us about evidence? • Prediction principle: • e confirms h if p(e|h) > p(e|¬h) • Corollary: If h entails e, then e confirms h for anyone who does not already reject h or accept e • Thus, evidence that’s already known for sure does not confirm! • Discrimination principle: • If someone believes h more than h*, new evidence e cannot overthrow h unless p(e|h*) > p(e|h) • Note that the relative support for hypotheses depends on how well they predict the evidence under consideration • Surprise principle: • If a person is equally confident in e and e* conditional on h, then e confirms h more strongly for her than e* does (or disconfirms it less strongly) iff she is less confident of e than e* Joyce, JM. Bayesianism. In: Mele AR, Rawling P, Eds. The Oxford Handbook of Rationality. Oxford University Press, 2004

  5. Practical applications of the principles to induction • Discrimination principle implies: • Similarity effect: • If you think that x is more similar to y than z and x it’s found that x has property P, then it’s more likely that y will be P than z • Typicality effect: • If x and y are members of a class but y is thought to be less typical, then getting data on x increases the probability of generalization more than getting data on y • Surprise principle implies: • Diversity effect: • When generalizing to a class, if property P holds amongst a diverse sample, it makes the generalization more probable than if the sample is less diverse Heit E. A Bayesian Analysis of Some Forms of Inductive Reasoning. In Rational Models of Cognition, M. Oaksford & N. Chater (Eds.), Oxford University Press, 1998.

  6. Are fallacies always fallacious? • Formal fallacies: • Example: affirming the consequent • Informal fallacies: • Called informal because it has not been possible to give “a general or synoptic account of the traditional fallacy material in formal terms” • Example: argument from ignorance Hamblin, C. L. (1970). Fallacies. London: Methuen.

  7. Affirming the consequent • If A then B, B; therefore, A • But doesn’t science work on this principle? • When working with this probabilistically, it can be seen as inference to the best explanation: • Only true if p(e|¬h) is low • Fails when there are multiple other plausible explanations or e is a strange event Korb, K. (2003). Bayesian informal logic and fallacy. Informal Logic, 24, 41–70.

  8. Argument from ignorance • “There’s no evidence for x, so not x” • Increases as specificity increases and the prior decreases • “There’s no evidence that ghosts don’t exist, so they do!” vs. “There’s no evidence that vaccines cause autism, so they don’t!” Hahn, U., & Oaksford, M. (2007). The Rationality of Informal Argumentation: A Bayesian Approach to Reasoning Fallacies. Psychological Review, 114, 704-–32.

  9. A conditional probability fallacy • Does order in the universe imply a god? • Assume that p(o|g) > p(o|¬g) • This isn’t what we want! We want the inverse! • However, p(g|o) > p(¬g|o) iff p(g) > p(¬g) • Therefore, order doesn’t imply a god unless we believe a god’s likely in the first place! Priest G. Logic: A Very Short Introduction. Oxford University Press. 2001

  10. Discuss!

More Related