270 likes | 392 Views
Study of -Ray Multiplicities of Evaporation Residues in Heavy Fusion Systems Using the MINIBALL Spectrometer. Sebastian Reichert TU Munich , E12. Identification of Super Heavy Elements.
E N D
Study of-Ray Multiplicitiesof Evaporation Residues in Heavy FusionSystems UsingtheMINIBALL Spectrometer Sebastian Reichert TU Munich, E12
IdentificationofSuper Heavy Elements GSI: Research: Super Heavy Elements. http://www.gsi.de/start/forschung/forschungsgebiete_und_experimente/ nu%starenna/ she_physik/research/ super_heavy_elements.htm • Isle ofStability • Nuclearstructure
Challenges GSI + RIKEN Cold Fusion: Verylittlecrosssection (pbarn)Short lifetimes (μs – ms) γ-energiesunknown FLNR Hot Fusion: Higher crosssection (pbarn)Long lifetimes (ms – d) γ-energiesunknown
Aimsofourwork • Semi-empiricalmassdependentmultiplicity • Application: Radon • Derivation andfurtherresults Ch. Berner • Reductionofthebackground • Offline: Searchingforcoincidenesbetweeen-raysand (unknown) γ-energies • Online: Appropriateshieldingofthefissionphotons
Setup • MLL in Garching • Alu-chamberwith 2mm wall thickness • 33% spacecovering • Implantation plate
Mass region Average neutronnumber Karwowski et al. (1982): -ray- -raycoincidencemethod;
Application: Element Radon PtO,4nRn; Beam energy: 87 MeV
PtO,4nRn Coincidence-spectrumofthedecayofthegroundstateat.9 keV
PtO,5nRn PtO,4nRn • -raycoincidencemethod • Rn: • Rn: • Rn: • -ray-raycoincidencemethod • Rn: • Rn:
Comparisonwithfurther-raymultiplicities H. J. Karwowski, S. E. Vigdor, W.W. Jacobs, S. Kailas, P. P. Singh, F. Soga, T. G. Throwe, T. E. Ward, D. L. Wark, and J. Wiggins: Phys. Rev. C Vol. 25, No. 3 (1982).
Reductionofthebackground • Heavy fusionelementsand high beam energies Fusion crosssectionsdecrease, fissionincreases • 1. Approach: Purifyingthespectra • 2. Approach: Suppression ofthefissionphotons N. Shinohara, S. Usuda et al.: Phys. Rev. C 34, 909-913 (1986).
Purifyingthespectra ThC,xn at 67 MeV Coincidence-spectrum: No-rays
γ- coincidentevents ThC,xn Coincidence-spectrum: No-rays Gate on 981 keV: Extractionof-rays?
Suppression ofthefissionphotons • Geometricalconsideration • Evaporation residuestowards Beam direction • Fission productsinto
Choice offusion- andfission-peaks NoshieldingShieldingwithslit Improvementoftheratio: 7.2(13)
Summary • Application: Radon • Different multiplicitiesfor different methods • Nuclearstructure • Reductionofthebackground • Offline: Searchingfortransitionenergies • Resultunclear • Online: Shieldingwithleadpot • Improvementofthefusion- tofissionratio
Solution: -raymultiplicity • Internal conversion: Interaction betweenelect.-magn. fieldsoftheexcitednucleiwithatomicelectrons (mostlyof K-shell). • Vacantshell will befilledfrom an electronof an highershell Charact. X-rayradiation • -rayenergycalculable via Moseley‘slaw
Purifyingthespectra ThC,xn 981 keV 973 keV Resultunclear
Processing todeterminethemultiplicity • -rayCoincidencemethod • Setting gate on decayline • Out oftheoriginatedspectrum: • No absolut effiziencynecessary • Considerationofcascadeswithoutinternalconversion
-ray-raycoincidencemethod • Unsufficientlevelschemeand large A high multiplicity: • Several-rays per decay Gate • Distribution ofcoincidentsignalsatfixedmultiplicity • e.g. measurementofexactlyone-ray • Numbers oftwosimultaneuousmeasured-rays
-ray-raycoincidencemethod • Absolut efficiency necessary • DirtySpectrumCascadeswithat least twiceinternalconversion • Iflowtransitionenergiesknown • -ray-raycoincidencemethod • Gate on γ-energypurifiesspectrum • Applyingthe-ray-raycoincidencemethod also countscascadeswithat least oneinternalconversion
PtO,4nRn • -raycoincidencemethod • -ray-raycoincidencemethod
Reasonsforthe different results 215 MeV 219 MeV No R.-D. Herzberg, S. Moon et al.: Eur. Phys. J. A 42, 333–337 (2009). P. Reiter, T. L. Khoo, T. Lauritsen, C. J. Lister et al.: Phys. Rev. Letters Vol. 84, No. 16 (2000).
Suppression ofthefissionphotons Improvementoftheratio: 7.2(13)