1 / 27

Sebastian Reichert TU Munich , E12

Study of -Ray Multiplicities of Evaporation Residues in Heavy Fusion Systems Using the MINIBALL Spectrometer. Sebastian Reichert TU Munich , E12. Identification of Super Heavy Elements.

jontae
Download Presentation

Sebastian Reichert TU Munich , E12

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Study of-Ray Multiplicitiesof Evaporation Residues in Heavy FusionSystems UsingtheMINIBALL Spectrometer Sebastian Reichert TU Munich, E12

  2. IdentificationofSuper Heavy Elements GSI: Research: Super Heavy Elements. http://www.gsi.de/start/forschung/forschungsgebiete_und_experimente/ nu%starenna/ she_physik/research/ super_heavy_elements.htm • Isle ofStability • Nuclearstructure

  3. Challenges GSI + RIKEN Cold Fusion: Verylittlecrosssection (pbarn)Short lifetimes (μs – ms) γ-energiesunknown FLNR Hot Fusion: Higher crosssection (pbarn)Long lifetimes (ms – d) γ-energiesunknown

  4. Solution: -raymultiplicity

  5. Aimsofourwork • Semi-empiricalmassdependentmultiplicity • Application: Radon • Derivation andfurtherresults  Ch. Berner • Reductionofthebackground • Offline: Searchingforcoincidenesbetweeen-raysand (unknown) γ-energies • Online: Appropriateshieldingofthefissionphotons

  6. Setup • MLL in Garching • Alu-chamberwith 2mm wall thickness • 33% spacecovering • Implantation plate

  7. Mass region Average neutronnumber Karwowski et al. (1982): -ray- -raycoincidencemethod;

  8. Application: Element Radon PtO,4nRn; Beam energy: 87 MeV

  9. PtO,4nRn

  10. PtO,4nRn Coincidence-spectrumofthedecayofthegroundstateat.9 keV

  11. PtO,5nRn PtO,4nRn • -raycoincidencemethod • Rn: • Rn: • Rn: • -ray-raycoincidencemethod • Rn: • Rn:

  12. Comparisonwithfurther-raymultiplicities H. J. Karwowski, S. E. Vigdor, W.W. Jacobs, S. Kailas, P. P. Singh, F. Soga, T. G. Throwe, T. E. Ward, D. L. Wark, and J. Wiggins: Phys. Rev. C Vol. 25, No. 3 (1982).

  13. Reductionofthebackground • Heavy fusionelementsand high beam energies Fusion crosssectionsdecrease, fissionincreases • 1. Approach: Purifyingthespectra • 2. Approach: Suppression ofthefissionphotons N. Shinohara, S. Usuda et al.: Phys. Rev. C 34, 909-913 (1986).

  14. Purifyingthespectra ThC,xn at 67 MeV Coincidence-spectrum: No-rays

  15. γ- coincidentevents ThC,xn Coincidence-spectrum: No-rays Gate on 981 keV: Extractionof-rays?

  16. Suppression ofthefissionphotons • Geometricalconsideration • Evaporation residuestowards Beam direction • Fission productsinto

  17. Suppression ofthefissionphotons

  18. Choice offusion- andfission-peaks NoshieldingShieldingwithslit Improvementoftheratio: 7.2(13)

  19. Summary • Application: Radon • Different multiplicitiesfor different methods • Nuclearstructure • Reductionofthebackground • Offline: Searchingfortransitionenergies •  Resultunclear • Online: Shieldingwithleadpot • Improvementofthefusion- tofissionratio

  20. Solution: -raymultiplicity • Internal conversion: Interaction betweenelect.-magn. fieldsoftheexcitednucleiwithatomicelectrons (mostlyof K-shell). • Vacantshell will befilledfrom an electronof an highershell Charact. X-rayradiation • -rayenergycalculable via Moseley‘slaw

  21. Purifyingthespectra ThC,xn 981 keV 973 keV Resultunclear

  22. Processing todeterminethemultiplicity • -rayCoincidencemethod • Setting gate on decayline • Out oftheoriginatedspectrum: • No absolut effiziencynecessary • Considerationofcascadeswithoutinternalconversion

  23. -ray-raycoincidencemethod • Unsufficientlevelschemeand large A high multiplicity: • Several-rays per decay Gate • Distribution ofcoincidentsignalsatfixedmultiplicity • e.g. measurementofexactlyone-ray • Numbers oftwosimultaneuousmeasured-rays

  24. -ray-raycoincidencemethod • Absolut efficiency necessary • DirtySpectrumCascadeswithat least twiceinternalconversion • Iflowtransitionenergiesknown • -ray-raycoincidencemethod • Gate on γ-energypurifiesspectrum • Applyingthe-ray-raycoincidencemethod also countscascadeswithat least oneinternalconversion

  25. PtO,4nRn • -raycoincidencemethod • -ray-raycoincidencemethod

  26. Reasonsforthe different results 215 MeV 219 MeV No R.-D. Herzberg, S. Moon et al.: Eur. Phys. J. A 42, 333–337 (2009). P. Reiter, T. L. Khoo, T. Lauritsen, C. J. Lister et al.: Phys. Rev. Letters Vol. 84, No. 16 (2000).

  27. Suppression ofthefissionphotons Improvementoftheratio: 7.2(13)

More Related