1 / 16

Linear scaling fundamentals and algorithms

Linear scaling fundamentals and algorithms. José M. Soler Universidad Autónoma de Madrid. Linear scaling = Order(N). CPU load. 3. ~ N. ~ N. Early 90’s. ~ 100. N (# atoms). Order-N DFT. Find density and hamiltonian (80% of code) Find “eigenvectors” and energy (20% of code)

Download Presentation

Linear scaling fundamentals and algorithms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Linear scaling fundamentals and algorithms José M. Soler Universidad Autónoma de Madrid

  2. Linear scaling = Order(N) CPU load 3 ~ N ~ N Early 90’s ~ 100 N (# atoms)

  3. Order-N DFT • Find density and hamiltonian (80% of code) • Find “eigenvectors” and energy (20% of code) • Iterate SCF loop • Steps 1 and 3 spared in tight-binding schemes

  4. 3 • Computational load ~ N DFT: successful but heavy • Computationally much more expensive than empirical atomic simulations • Several hundred atoms in massively parallel supercomputers

  5. Key to O(N): locality Large system ``Divide and conquer’’ W. Yang, Phys. Rev. Lett. 66, 1438 (1992) ``Nearsightedness’’ W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)

  6. Basis sets for linear-scaling DFT • LCAO: - Gaussian based + QC machinery • G.Scuseria (GAUSSIAN), • M. Head-Gordon (Q-CHEM) • - Numerical atomic orbitals (NAO) • SIESTA • S. Kenny &. A Horsfield (PLATO) • - Gaussian with hybrid machinery • J. Hutter, M. Parrinello • Bessel functions in ovelapping spheres • P. Haynes & M. Payne • B-splines in 3D grid • D. Bowler & M. Gillan • Finite-differences (nearly O(N))J. Bernholc

  7. x central b c b buffer buffer central buffer x’ Divide and conquer Weitao Yang (1992)

  8. f(E) = 1/(1+eE/kT)  n cn En F   cn Hn Etot = Tr[ F H ] 1 ^ ^ 0 ^ ^ Emin EF Emax Fermi operator/projector Goedecker & Colombo (1994)

  9.    = 3 2 - 2 3 Etot() =  H = min 1    0 -0.5 0 1 1.5 Density matrix functional Li, Nunes & Vanderbilt (1993)

  10. Sij = < i | j > | ’k > = j | j > Sjk-1/2 EKS = k< ’k | H | ’k > = ijk Ski-1/2< i | H | j > Sjk-1/2 = Tr[ S-1 H ] Kohn-Sham EO(N) = Tr[ (2I-S) H ] Order-N ^ ^ Wannier O(N) functional • Mauri, Galli & Car, PRB 47, 9973 (1993) • Ordejon et al, PRB 48, 14646 (1993)

  11. O(N) Non-orthogonality penalty KS Sij = ij  EO(N) = EKS Order-N vs KS functionals

  12. Chemical potential Kim, Mauri & Galli, PRB 52, 1640 (1995) • (r) = 2ij i(r) (2ij-Sij) j(r) • EO(N) = Tr[ (2I-S) H ]# states = # electron pairs •  Local minima • EKMG = Tr[ (2I-S) (H-S) ]# states > # electron pairs  = chemical potential (Fermi energy) Ei <   |i|  0 Ei >   |i|  1 Difficulties Solutions • Stability of N() Initial diagonalization • First minimization of EKMG Reuse previous solutions

  13. i Rc rc Orbital localization  i(r) =  ci(r)

  14. Convergence with localisation radius Si supercell, 512 atoms Relative Error (%) Rc (Ang)

  15. x i x 0 2 5.37 5.37 3 1.85 8.29 1.85 = 15.34 3.14  0 = 0 1.15  0 = 0 ------- Sum 15.34 1.85 7 2.12 0 0 i y 0 2.12 3 8.29 0 4 3.14 8 1.15 Sparse vectors and matrices Restore to zero xi 0 only

  16. Actual linear scaling c-Si supercells, single- Single Pentium III 800 MHz. 1 Gb RAM 132.000 atoms in 64 nodes

More Related