560 likes | 701 Views
CSC 172 DATA STRUCTURES. CSC172_LEC11_TreesAVL.odp. A PROBLEM WITH BSTs. Common operations on balanced BST are O(log(n)) Alas, when the tree goes out of balance, performance degrades (worst case : chain O(n)) There are several data structures that modify the BST to maintain balance.
E N D
CSC 172 DATA STRUCTURES CSC172_LEC11_TreesAVL.odp
A PROBLEM WITH BSTs Common operations on balanced BST are O(log(n)) Alas, when the tree goes out of balance, performance degrades (worst case : chain O(n)) There are several data structures that modify the BST to maintain balance.
AVL Trees The first balanced binary search tree Named after discoverers Adelson-Velskii and Landis. DEFINITION: An AVL tree is a binary search tree with the additional balance property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1. (Height of an empty subtree is –1).
1 1 0 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 AN AVL TREE 3 12 What is the height? 2 8 16 4 10 14 2 6 What if we insert “7”?
Out of balance 1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 NOT AN AVL TREE 4 12 3 8 16 0 0 4 10 14 0 1 2 6 0 -1 7
AVL THEOREM An AVL tree of n element has height O(log n) In fact, An AVL tree of height H has at least FH+3 –1 nodes, where Fi is the ith Fibonacci number
AVL THEOREM Let SH be the size of smallest AVL tree of height H. Clearly S0=1 and S1=2 SH must have subtrees of height H-1 and H-2 These subtrees must have fewest nodes for height So, SH = SH-1 + SH-2 + 1 Minimum number AVL trees are Fibonacci trees
Smallest AVL Tree of height H H H-2 H-1 SH-2 SH-1
Adds can unbalance a BST Only nodes on the path from the root to the insertion point can have their balances altered If we restore the unbalance node, we balance the tree
1 1 0 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 AN AVL TREE 3 12 If we insert 7 We unbalance the whole tree 2 8 16 4 10 14 2 6 What if we insert “15”?
2 1 0 1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 AN AVL TREE 3 12 If we insert 7 We unbalance the whole tree 2 8 16 4 10 14 0 -1 2 6 15 What if we insert “15”?
4 cases Insertion in left sub-tree of left child Insertion in right sub-tree of left child Insertion in left sub-tree of right child Insertion in right sub-tree of right child 1 & 4 are symmetric 2 & 3 are symmetric
Cases 1 & 4 Insertion extends Tree ‘A’ k2 k1 H H-2 C H-2 H-2 A B
Cases 1 & 4 Insertion extends Tree ‘A’ “Rotation” fixes balance k2 k1 H-2 C H-2 H-1 A B
Cases 1 & 4 H Insertion extends Tree ‘A’ “Rotation” fixes balance k1 k2 H-2 H-1 H-2 A C B
Cases 2 & 3 Insertion extends Tree ‘B’ k2 k1 H H-2 C H-2 H-2 A B
Cases 2 & 3 Insertion extends Tree ‘B’ k2 k1 H-2 C H-1 H-2 A B
Cases 2 & 3 Insertion extends Tree ‘B’ “Rotation” Does not fix balance k1 k2 H-2 H-2 H-1 A C B
Double Rotation If x is out of balance for cases 2&3 Rotate between X’s child and grandchild Rotate between X and its new child
Cases 2 & 3 Insertion extends Tree ‘B’ k2 k1 H H-2 C H-2 H-2 A B
Cases 2 & 3 Insertion extends Tree ‘B’ or ‘C’ k2 k1 H k3 H-2 D H-3 H-2 A B C
Cases 2 & 3 Rotate grandchild With child Insertion extends Tree ‘B’ or ‘C’ k2 k1 k3 H-2 D H-2 H-2 A B C
Cases 2 & 3 Rotate grandchild With child Insertion extends Tree ‘B’ or ‘C’ k2 Rotate X with new child k3 k1 H-2 D H-2 C A B H-2
Cases 2 & 3 Rotate grandchild With child Insertion extends Tree ‘B’ or ‘C’ k3 Rotate X with new child k2 k1 H-2 H-2 A B C H-2 D
ImplementationDo this in lab Insert Fixup Rotate Need to keep track of balance
Rotation private void rotateLeft(Node p) { Node r = p.right; p.right = r.left; if (r.left != null) r.left.parent = p; r.parent = p.parent; if (p.parent == null) {root = r; r.parent = null;} else if (p.parent.left == p) p.parent.left = r; else p.parent.right = r; r.left = p; p.parent = r; }
root 50 80 element left right parent
p r root 50 Entry r = p.right; 80 90 element left right parent
p r root 50 Entry r = p.right; p.right = r.left; 80 90 element left right parent
p r root 50 Entry r = p.right; p.right = r.left; if (r.left != null) r.left.parent = p; if (p.parent == null)root = r; r.parent = p.parent; 80 90 element left right parent
p r root 50 Entry r = p.right; p.right = r.left; if (r.left != null) r.left.parent = p; r.parent = p.parent; if (p.parent == null) root = r; else if … else … r.left = p; 80 90 element left right parent
p r root 50 Entry r = p.right; p.right = r.left; if (r.left != null) r.left.parent = p; r.parent = p.parent; if (p.parent == null){ root = r; ..} else if … else … r.left = p; p.parent = r; 80 90 element left right parent
Node class private static class Node { Object element; char balanceFactor = ‘=‘; // new nodes are balanced // we could set this to R or L indicating child with > height Node left = null, right = null, parent; Node (Object element, Entry parent) { this.element = element; this.parent = parent; } }
50 R 20 80 L R 10 70 100 = = = 92 50 = =
public boolen add(Object o){ if (root == null) { root = new Node(o,null); size++; return true; }// empty tree else { Node temp = root, ancestor = null; // we keep track of nearest unbalanced ancestor int comp; while (true) { comp = ((Comparable)o).compareTo(temp.element); if (comp == 0) return false;
if (comp < 0) { if (temp.balanceFactor != ‘=‘) ancestor = temp; if (temp.left != null) temp = temp.left; else { temp.left = new Entry(o,temp); fixAfterInsertion(ancestor,temp.left); size++; } }// comp < 0
else { // comp > 0 if (temp.balanceFactor != ‘=‘) ancestor = temp; if (temp.right != null) temp = temp.right; else { temp.rig = new Node(o,temp); fixAfterInsertion(ancestor,temp.right); size++; } }// comp < 0 }// while }// root not null }//method add
Adjusting paths 50 = 25 70 = = 30 15 60 90 = = = = 55 =
Adjusting paths 50 R 25 70 = L 30 15 60 90 = = L = 55 =
protected void adjustPath(Entry to, Entry inserted) { Object o = inserted.element; Node temp = inserted.parent; while (temp != to) { if (((Comparable)o).compareTo(temp.element)<0) temp.balanceFactor = ‘L’; else temp.balanceFactor = ‘R’; temp= temp.parent }// while } //adjust path
protected void fixAfterInsertion(Node ancestor, Entry inserted) { Object o = inserted element; if (ancestor == null) { if (((Comparable)o).compareTo(root.element)<0) root.balanceFactor = ‘L’; else root.balanceFactor = ‘R’; adjustPath(root,inserted); } // Case 1: all ancestor of inserted element have ‘=‘ balanceFactor
protected void fixAfterInsertion(Node ancestor, Entry inserted) { Object o = inserted element; if (ancestor == null) { if (((Comparable)o).compareTo(root.element)<0) root.balanceFactor = ‘L’; else root.balanceFactor = ‘R’; adjustPath(root,inserted); } // Case 1: all ancestor of inserted element have ‘=‘ balanceFactor
if ((ancestor.balanceFactor == ‘L’ && ((Comparable)o).compareTo(ancestor.element)>0)|| (ancestor.balanceFactor == ‘R’ && ((Comparable)o).compareTo(ancestor.element)<0)){ ancestor.balanceFactor = ‘=’; adjustPath(ancestor,inserted); } // Case 2: insertion causes ancestor’s balanceFactor to ‘=‘
if ((ancestor.balanceFactor == ‘R’ && ((Comparable)o).compareTo(ancestor.right.element)>0){ ancestor.balanceFactor = ‘=’; rotateLeft(ancestor); adjustPath(ancestor.parent,inserted); } // Case 3: ancestor’s balance factor = ‘R’ // and o > ancestor’s right child
if ((ancestor.balanceFactor == ‘L’ && ((Comparable)o).compareTo(ancestor.left.element)<0){ ancestor.balanceFactor = ‘=’; rotateRight(ancestor); adjustPath(ancestor.parent,inserted); } // Case 4: ancestor’s balance factor = ‘L’ // and o < ancestor’s right child
if (ancestor.balanceFactor == ‘L’ && ((Comparable)o).compareTo(ancestor.left.element)>0){ rotateLeft(ancestor.left); rotateRight(ancestor); adjustLeftRight(ancestor,inserted); } // Case 5: ancestor’s balanceFactor = ‘L’ // and o > ancestor’s left child
else{ rotateRight(ancestor.right); rotateLeft(ancestor); adjustRightLeft(ancestor,inserted); } // Case 6: ancestor’s balanceFactor = ‘R’ // and o < ancestor’s right child }// fixAfterInsertion
protected void adjustLeftRight(Entry ancestor, Entry inserted) { Object o = inserted.element; if (ancestor.parent == inserted) ancestor.balanceFactor = ‘=‘; else if (((Comparable)o).compareTo(ancestor.parent.element)<0){ ancestor.balanceFactor = ‘R’; adjustPath(ancestor.parent.left,inserted); }// o < ancestor’s parent else { ancestor.balanceFactor = ‘=’; ancestor.parent.left.balanceFactor = ‘L’; adjustPath(ancestor,inserted); }// while } //adjustLeftRight