240 likes | 247 Views
Explore results from KLOE Cesare Bini Università “La Sapienza” and INFN Roma, covering the KLOE physics program, detector details, experiment status, neutral kaon decays, f radiative decays, and conclusions with future perspectives.
E N D
Recent results from KLOE Cesare Bini Universita’ “La Sapienza” and INFN Roma • The KLOE physics program • The KLOE detector • Status of the experiment • Results on neutral kaon decays • Results on f radiative decays • Conclusions and perspectives
1. The KLOE physics program. • e+e f W = mf = 1019.4 MeV sf~3 mb • Decay channels • K+K = 49.2% Charged Kaon decays + CP/CPT tests • K0K0 = 33.8% Neutral Kaon decays + CP/CPT tests ( e’ / e ) • p+pp0 = 15.5% 3 pion decay rp (r shape parameters) • hg = 1.3% Radiative decays: pseudoscalar: h physics • p0g = ~10-3“ • h’g = ~10-4“ pseudoscalar mixing angle • ppg = ~10-4scalar f0 • hp0g = ~10-4“ a0 h e+e- = ~10-4Conversion decays: transition form factor Ffh p0e+e = ~10-5“ “ Ffp e+e p+p-g Initial state radiation s(e+e p+p-) 2mp < W < mf • e+e f around f peak (energy scan) f resonance parameters
2. The KLOE detector: Drift chamber Calorimeter (Pb-scint.fib.) Magnetic field = 0.56 T Drift chamber: Large volume d=4m l=3.3m He – Isob 90-10 gas mixt. Momentum resolution dp/p < 0.4% Calorimeter: Energy resolution: s/E = 5.4% / (E(GeV)) Time resolution st = 55 ps / (E(GeV))40 ps (cal.)120 ps (coll.time)
3. Status of the experiment Data taken from april 1999 to december 2001~ at f peak + 1 energy scan Analysis status: 2000 data ~completed (25 pb-1 7.5 x 107f) 2001 data in progress (190 pb-1 5.7 x 108f) All results are still preliminary Present day performance: peak average L(cm2 s1) 5·1031 3.5·1031 day L dt (pb1)3 1.8
4.Results on Neutral Kaon decays Neutral kaons produced in a pure quantum JPC = 1 state: pK = 110 MeV lS = 6 mm lL = 3.5 m Example of f KSKL p0p0 p+p- • Tagging: pure KS and KL beams analysis of kaon decays double ratio ( e’ / e ) • Interferometry studies
KS tagging by identification of KL interacting in the EmC (“KL crash”) [ ~50% of KL ] Selection cuts: • Eclus> 200 MeV • |cos(qclus)| < 0.7 • 0.1950 b* 0.2475 (b* = KL velocity in the f rest frame) Position of the KL KS momentum Tagging efficiency etag~ 30% b* distribution of “KL crash” Example of f KSKL p+p-“crash” KLOE has now about 6 107 tagged KS. All channels are accessible. Results from 2000 data (5.4 106 tagged KS) on: (1) R=G(KS p+p- ) / G(KS p0p0 ) (2) BR(KS p en)
R=G(KS p+p- ) / G(KS p0p0 ) • Motivations: • First part of double ratio • Extractions of Isospin Amplitudes and Phases A0 A2and d0-d2 consistent treatment • of soft g in KS p+p- (g) (PDG data contain ambiguities) • [Cirigliano, Donoghue, Golowich 2000] • Selection procedure: • 1. KS tagging • 2. KS p+p-(g) two tracks from I.P + acceptance cuts: fully inclusive measurement • (Eg* up to Eg*max=170 MeV) eppg(Eg*) from MC folded to theoretical g spectrum • correction • D = (-3.4 ± 0.1) x 10-3 3.KS p0p0 neutral prompt cluster (Eg>20 MeV and (T-R/c) < 5st ) at least 3 neutral prompt clusters (p0 e+e-g included)
Result: Nev (KS p+p- ) = 1.098 x 106 Nev (KS p0p0 ) = 0.788 x 106 R = 2.239 ± 0.003stat ± 0.015syst stat. uncertainty at 0.14% level contributions to “systematics”: tagging eff. Ratio 0.55% photon counting 0.20% tracking 0.26% Trigger 0.23% -------------------------------------- Total syst. uncertainty 0.68% PDG 2001 average is 2.197 ± 0.026 ( without clear indication of Eg*cut ) With 2001 data (180 pb-1) improvement on: absolute scale tagg.eff. Bias statistics of control sub-samples Eg* spectrum
(2) BR(KS p en) • Motivation: • If (CPT ok) .AND. (DS=DQ at work): • G(KS p en) = G(KL p en) BR(KS p en) = BR(KL p en) x (GL/GS) • = ( 6.704 ± 0.071 ) x 10-4 • (using all PDG information). • Only one measurement (CMD-2 1999): • = ( 7.2 ± 1.4 ) x 10-4 • Selection procedure • Vertex with two tracks from I.P. • kinematics (against huge p+p- “background”) • time of flight ( electron vs pion) • final signal variable = Emiss-|pmiss| • BR evaluation: • normalization to KS p+ p- (s(BR)~0.5%) • both charge states are considered • (well separated charge asymmetry) ToF selection illustrated for MC: 1. KS p+ p- MC events 2. KS p enMC events
Result: Nev(KS p en) = 627 ± 30 [after the fit, residual background subtraction is included] BR(KS p en) = (6.79 ± 0.33stat ± 0.16syst) x 10-4 stat. uncertainty at 4.7% level contributions to systematics: tag eff, ratio 0.6% tracking + vertex 2.0% time of flight 0.8% trigger + t0 0.9% ----------------------------------- Total systematics 2.4% BR(KS p en)
5.Results on f radiative decays • f Pseudoscalar + g hg p0g h’g According to quark model: assuming: no other content (e.g. gluonic)) p0 = (uu-dd)/2 h = cosaP(uu+dd)/2 + sinaPss h’ = -sinaP(uu+dd)/2 + cosaPss assuming: f = ss state (aV=0) assuming: no OZI-rule violations g(f h’g) = FscosaVcosaP – FqsinaVsinaP g(f hg) = FscosaVsinaP + FqsinaVcosaP ( aVaP= mixing angles in the flavour base) ( Fs Fq= form factors) G(f h’g) Kh’ R = = cotg2aP ( )3 G(f hg) Kh
Decay chain used: (same topology 2T + 3 photons / final states different kinematics) • (a) f hg p+p-p0g p+p- 3g • (b) f h’g h p+p-g p+p- 3g • Selection: • 2t (ET1+ET2<430 MeV) + 3g: kin. fit (no mass constraint) • only (a) and (b) (negligible bkg.) BUT [N(b) ~ N(a) / 100] Results: N(a) = 50210 220 N(b) = 125 13stat +bck Invariant mass spectrum of h’g • BR(f h’g) • R = = (5.0 0.5stat 0.3syst) x 10-3 • BR(f hg) • aP = ( 40.8 1.7)o [ qP = (-13.9 1.7)o ] aP = ( 39.3 1.0)o J/y decays and others [Feldmann Kroll 2002] • BR(f h’g ) = (6.5 0.6stat 0.4syst) x 10-5
2.f Scalar (0++ quantum numbers) + g[f0(980) I=0, a0(980) I=1] p0p0g (f0gsg, f0 , s pp) 5g final state p+p-g(“ ) 2t + 1g final state: huge background from: ISR (radiative return) FSR + interference (signal “hidden”) hp0g (a0g a0 hp) [ h gg ] 5g final state (40%) [ h p0p0p0] 9g final state (32%) [ h p+p-p0 ] 2t + 5g final state (23%) Motivations: f0, a0, not easily interpreted as qq states; other interpretations suggested: qqqq states (lower mass) [Jaffe 1977]; KK molecule (m(f0,a0)~2m(K)) [Weinstein, Isgur 1990]; f0(980) , a0(980) and s lowest mass scalar qq nonet [Tornqvist 1999] f f0g , a0g sensitive to f0,a0 nature [Achasov, Ivanchenko 1989]: phenomenological framework (kaon loop model) coupling constants radiative g g(fKK) from G(fK+K-) g(f0KK) g(a0KK) f0, a0 model g(f0pp) g(a0hp) M(p0p0) M(hp) spectra f f0,a0 Kaon loop final state
f p0p0g • Main background sources (5g final states): • e+ewp0 w p0g • f hp0g h gg • Other background sources (not 5g final states): • f hg h gg (3g) or h p0p0p0 (7g) • Selection procedure: • 5 prompt g Eg > 7 MeV • kinematic fit (without mass const.) • Result: • Nev = 2438 61 • BR(f p0p0g )=(1.09 0.03stat 0.05syst)x10-4 • CMD-2 (0.920.080.06)x10-4 • SND (1.140.100.12)x10-4 • Fit to the Mp0p0 spectrum (kaon loop): • contributions from f f0g • f sg • + “strong” negative interference • negligible contribution f r0p0 p0p0g Fit results: M(f0) = 973 1 MeV g2(f0KK)/4p = 2.79 0.12 GeV2 g(f0pp) /g(f0KK) = 0.50 0.01 g(fsg) = 0.060 0.008 BR(f f0g p0p0g ) = (1.49 0.07)x10-4
f hp0g Measured in 2 final states: (Sample 1) h gg (5g) p0p0g is the main background 5g selection (see p0p0g) + kinem. fit (Sample 2) h p+p-p0 (2t + 5g) Negligible bckg with the same topology: e+ewp0 w p+p-p0 2t + 4g f KSKL (KL prompt decay) 2t + 4/6g 2t + 5g selection + kinem.fit Results: (Sample1) Nev = 916 Nbck = 309 20 BR(f hp0g) = (8.5 0.5stat 0.6syst)x10-5 (Sample2) Nev = 197 Nbck = 4 4 BR(f hp0g) = (8.0 0.6stat 0.5syst)x10-5 CMD-2 (9.02.41.0) x 10-5 SND (8.81.40.9) x 10-5 Combined fit to the Mhp0 spectra: dominated by f a0g negligible f r0p0 hp0g Fit results: M(a0) = 984.8 MeV (PDG) g2(a0KK)/4p = 0.40 0.04 GeV2 g(a0hp) /g(a0KK) = 1.35 0.09 BR(f a0g hp0g) = (7.4 0.7)x10-5
Interpretation of KLOE results on scalars (within the context of kaon-loop framework): (preliminary) parameter KLOE result 4q model qq(1) model qq(2) model g2(f0KK)/4p(GeV2)2.79 0.12 “super-allowed” “OZI-allowed” “OZI-forbidden” g(f0pp) /g(f0KK)0.50 0.01 0.3-0.5 0.5 2 g2(a0KK)/4p(GeV2)0.40 0.04 “super-allowed” “OZI-forbidden” “OZI-forbidden” g(a0hp) /g(a0KK)1.35 0.09 0.91 1.53 1.53 f0 = ss f0 = (uu+dd)/ 2 a0 = (uu-dd)/2 a0 = (uu-dd)/ 2 4q doesn’t describe a0 parameters; 4q compatible with f0 parameters; f0/a0 ratio sensitive to isospin mixing [Close Kirke 2001]: BR(f f0g ) g2(f0KK) = 6.0 0.6 ; = 6.9 1.0 BR(f a0g) g2(a0KK) if Ff0(R) = Fa0(R) qS= (47 2)o [no isospin mixing qS = 45o]
6. Conclusions and perspectives DAFNE performance has improved considerably during the first two years of KLOE data taking KLOE detector well performing and under control From 2000 data (25 pb-1) results on: KS decays f radiative decays improve previous “PDG” knowledge Analysis of 2001 data (190 pb-1) in progress. Expected new results will be: rare KS decays [p+p-g , gg , limits on 3p] KL decays [gg , p0p0 ….] K decays h decays (6 x106h produced) [chiral perturbation theory checks] hadronic cross-section s(e+e p+p-) 2mp < W < mf Data taking 2002 starting now 500 pb-1 realistic by end of the year
Detector calibrated on-line (run by run ~ ½ hour): - Drift Chamber s-t relations “ momentum scale (MK) - Calorimeter energy scale (e+e- gg) “ time scale + offset “ - s and pf evaluated (Bhabha KS, KL) Start reconstruction and event classification (~ 1 hour delay)
Efficiencies are evaluated and monitored using data control samples: photon detection efficiency ~ 99% on most of the energy range + decrease below 100 MeV tracking efficiency ~ 97.5% + decrease at small pT and q trigger efficiency in case of KSKL configuration if KS triggers measure KL trigger efficiency if KL triggers measure KS trigger efficiency
MC [MeV] MC E1 vs E2 (after kin. fit) [MeV] • Decay chain used: (same topology 2T + 3 photons / final states different kinematics) • (a) f hg p+p-p0g p+p- 3g • (b) f h’g h p+p-g p+p- 3g Selection: 2 tracks (ET1+ET2<430 MeV) + 3 photons: kin. fit (no mass constraint) only (a) and (b) selected (negligible bkg.) • (a) vs. (b) [N(b) ~ N(a) / 100] • Photon energy spectra • from MC cut on Eg • (E1, E2 two largest energy • photons) g spectrum (MeV) for hg g spectrum (MeV) for h’g E1 vs. E2 for MC h’g
Data E1 vs E2 (after kin. fit) [MeV] Results on data (17 pb-1) N(a) = 50210 220 N(b) = 125 13stat +bck Invariant mass spectrum of h’gis ok. • N(h’g) e(hg) BR(h p+p-p0) BR(p0 gg) • R = x x = (5.3 0.5stat 0.4syst) x 10-3 • N(hg) e(h’g) BR(h’ p+p-h) BR(h gg) • aP = (40.0 1.6)o [qP = (-14.7 1.6)o in the octet-singlet base] ( aP = (39.3 1.0)o world average [Feldmann Kroll 2002]) • BR(f h’g) = (6.8 0.6stat 0.5syst) x 10-5 (improve respect to previous measurements)
5.Results on f radiative decays Mesons below 1 GeV accessible: f is ~ ss state G(fMg) probe quark s content of meson M • f Pseudoscalar + g • hg • p0g • h’g Meson coupling to final state g Meson f final state According to quark model: assuming: no other content (e.g. gluonic)) p0 = (uu-dd)/2 h = cosaP (uu+dd)/2 + sinaPss h’ = -sinaP (uu+dd)/2 + cosaPss assuming: no OZI-rule violations g(f hg) = FscosaVsinaP + FqsinaVcosaP g(f h’g) = FscosaVcosaP – FqsinaVsinaP ( aV aP = mixing angles in the flavour base) ( Fs Fq = form factors) assuming: f = ss state (aV=0) Kaon loop K+K- Meson coupling to KK loop: probe of s content G(f h’g) Kh’ R = = cotg2aP ( )3 G(f hg) Kh
R=G(KS p+p- ) / G(KS p0p0 ) • Motivations: • First part of double ratio • Extractions of Isospin Amplitudes and • Phases A0 A2and d0-d2 consistent • treatment of soft g in KS p+p- (g) • (PDG data contain ambiguities) • [Cirigliano, Donoghue, Golowich 2000] • Selection procedure: • 1. KS tagging • 2. KS p+p-(g) • two tracks from I.P + acceptance cuts. • fully inclusive measurement • (Eg* up to Eg*max=170 MeV) • 3.KS p0p0 • neutral prompt cluster • (Eg>20 MeV and (T-R/c) < 5st ) • at least 3 neutral prompt clusters • (p0 e+e-g included) Soft photon emission: eppg(Eg*) not uniform correction Theoretical g spectrum folded with experimental efficiency D = (-3.4 ± 0.1) x 10-3
2.f Scalar (0++ quantum numbers) + g[f0 I=0, a0 I=1, s I=0] p0p0g (f0gsg, f0 , s pp) 5g final state p+p-g(“ ) 2t + 1g final state: huge background from: ISR (radiative return) FSR + interference (signal “hidden”) hp0g (a0g a0 hp) [ h gg ] 5g final state (40%) [ h p0p0p0] 9g final state (32%) [ h p+p-p0 ] 2t + 5g final state (23%) Motivations: f0, a0, not easily accomodated in a qq nonet; qqqq states (lower mass) [Jaffe 1977]; KK molecule (m(f0,a0)~2m(K)) [Weinstein, Isgur 1990]; f f0g , a0g sensitive to f0,a0 nature [Achasov, Ivanchenko 1989]: g f f0,a0 Final state Kaon loop