1 / 24

X-ray States of Black Hole Binaries & Possible Applications for General Relativity

This presentation will probably involve audience discussion, which will create action items. Use PowerPoint to keep track of these action items during your presentation In Slide Show, click on the right mouse button Select “Meeting Minder” Select the “Action Items” tab

Download Presentation

X-ray States of Black Hole Binaries & Possible Applications for General Relativity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. This presentation will probably involve audience discussion, which will create action items. Use PowerPoint to keep track of these action items during your presentation • In Slide Show, click on the right mouse button • Select “Meeting Minder” • Select the “Action Items” tab • Type in action items as they come up • Click OK to dismiss this box • This will automatically create an Action Item slide at the end of your presentation with your points entered. X-ray States of Black Hole Binaries & Possible Applications for General Relativity Ron Remillard, Center for Space Research, M.I.T.

  2. Outline • Progress for Black Hole Binaries • Intensive Monitoring Campaigns: RXTE, radio, optical • Modified Definitions of X-ray States: Physical Elements • Each State : Applications for General Relativity • Each State : Problems in Accretion Physics • Prospects for Advancement • Multi-X-ray Observations (broad-band and high-resolution Spectroscopy & Timing & Imaging) • Multi-Frequency Observations • Engaging Theorists

  3. Compact Objects Masses from binary motion of companion stars or pulsars Black Hole Binaries Mx = 4-18 Mo Neutron Stars (X-ary & radio pulsars) Mx ~ 1.4 Mo

  4. Black Holes in the Milky Way 16 Black-Hole Binaries in the Galaxy (Jerry Orosz, SDSU) Scaled, tilted, and colored for surface temp. of companion star. Black Hole Properties: mass (Mx) and spin (a* = cJ / GMx2)

  5. BH in Milky Way: 15/16 are transients XTE J1550-564 First recorded outburst: 1998 Sept 6 Optical study in quiescence: 1.54 day binary, 9.6 Mo black hole + K subgiant star d ~ 5 kpc ; Peak Lx ~ 20,000 Lo

  6. Black Holes in the Milky Way

  7. Black Holes in the Milky Way X-ray States: thermal & non-thermal Spectral components

  8. X-ray States of Black Hole Binaries McClintock & Remillard 2003 Statemodified descriptions “very high” “steep power law” power law, G ~ 2.4-3.0, fpow > 50% or fpow > 20% + QPOs “high/soft” “thermal dominant” fpow < 20%, no QPOs, rms (0.1-10 Hz) < 0.06 at 2-30 keV “low/hard” “low-hard (steady jet)” fpow > 80% (2-20 keV), G ~ 1.5-2.1, broad PDS features, rms(0.1-10 Hz) is 10-30% + “quiescent” “quiescent” Lx < 10-4 Lmax , power law, G ~ 1.9

  9. X-ray States, GR, & Accretion Physics • State / propertiesGR opportunity ? / physics problem • Steep power lawHigh Freq. QPOs: n GR resonance? (Mx, a*) a* • G ~ 2.5 , QPOsorigin of steep power law and QPOs • Thermal dominant“spectro. parallax” Rin : {Ndbb, d, i } Rin(Mx, a*) a* • Tdisk ~ 1 keV range a* 0  1, then Rin = 6  1 GMx/c2 • disk spectrum in Kerr metric + MHD + rad. transfer • Low Hard (steady jet) jets tap BH spin energy? (impulsive & steady jets?) • ~ 1.7 ejection mechanisms; X-ray mechanism; B evolution • Quiescence N.S. vs. B.H. spectra  surface vs. event horizon • ~ 1.9 ADAF/CDAF model disputes; alternative scenarios?

  10. Black Hole Emission States Statistics XTE J1550-564GRO J1655-40XTE J1118+480 Steep Power Law 26 15 0 Thermal Dominant 147 47 0 Low/hard 22 2 10 Intermediate 57 2 0 Timescales (days) for all BH Binaries (RXTE) durationtransitions Steep Power Law 1-10 <1 Thermal Dominant 3-200 1-10 Low/hard 3-200 1-5 Intermediate 3-30 1-3

  11. X-ray States : Complications “intermediate”G~2.5 impulsive jets state+ Ecut? in transitions; +

  12. More Complications: Fast X-ray Novae SAX J1819.3-2525 (V4641 Sgr) black hole binary (Orosz et al. 2002) ‘Fast X-ray Nova’ 20 min of rage, Sept 15, 1999 (RXTE) toutburst << t disk flow ~ 20 d

  13. High Frequency QPOs (40-450 Hz) source HFQPO n (Hz) GRO J1655-40 300, 450 XTE J1550-564 184, 276 GRS 1915+105 41, 67, 113, 164 XTE J1859+226 190 4U1630-472 184 XTE J1650-500 250 H1743-322 160?, 240 ----------- red: 2-30 keVgreen: 6-30 keV blue: 13-30 keV

  14. Commensurate Frequencies (3:2) XTE J1550-564: 184, 276 Hz GRO J1655-40: 300, 450 Hz

  15. HFQPOs and General Relativity • “Diskoseismology” (Wagoner 1999; Kato 2001) • Eigenfunctions for adiabatic perturbations  g-modes m={0,1}  no, 4.1no • ?? Add complexities {thick disk, corona model for SPL, nonlinear effects} • Resonance in the Inner Disk (Abramowicz & Kluzniak 2001) • GR has Frequencies for 3 coords {r, q, f} & non-circular orbits  : nr, nf or nr, nq resonance • ‘blob’ orbits? (Stella et al. 1999 for n.s.)… model too simplistic? …ray tracing in Kerr metric (Schnittman & Bertschinger 2003): feasible to produce QPOs at n =nfand n= nf-nr = 0.667nf

  16. GR Coordinate Frequencies nr, q, f = f ( Mx, r= r / (GMx/c2), a* = cJ/GMx2 ) azimuth: nf = c3/GMx [ 2pr3/2 (1+ a*r-3/2) ]-1 radial: nr = |nf| (1 - 6r-1 + 8a*r-3/2 - 3a*2r-2)1/2 polar: nq = |nf| (1 - 4a*r-3/2 + 3a*2r-2)1/2 Bardeen & Pettersen 1975; Chandrasekhar 1983 Merloni et al. 1999; Markovic 2000; Lamb 2001

  17. QPO Pairs (3:2 no) vs. BH Mass GRO J1655-40, XTE J1550-564, GRS1915+105: plot 2no vs, MBH • “QPO mass” (no = 931 Hz / M)  same mechanism AND same spin a* ~ 0.3-0.4 if QPOs are nfand nf-nr ? Compare subclasses While model efforts go on.

  18. Combining X-ray Timing & Spectroscopy GRO J1655-40 red “x”: no QPOs, thermal dom. green D: only Low-Freq. QPOs (0.1-20 Hz) blue: LFQPOs + HFQPOs; (300, 450 Hz) steep power law state

  19. Combining X-ray Timing & Spectroscopy XTE J1550-564 red “x”: no QPOs, thermal dom. green D: only Low-Freq. QPOs (0.05-20 Hz); LH and INT states blue: LFQPOs + HFQPOs; (184, 276 Hz) most: steep power-law state

  20. Low Frequency QPOs XTE J1550-564 QPOs (4 Hz) rms variations ~ 30% At Lx ~ 5X1038 erg cm-2 s-1 (5.3 kpc; ~0.3 LEdd) ? Spiral waves in a highly magnetized disk? Tagger & Pellat 1999 (transports energy out to wave corotation radius)

  21. Low Frequency QPOs • Properties • n range: 0.05 – 30 Hz (most 0.5 – 10 Hz) • amplitude: 1 – 20 % (rms, 2 – 30 keV) • Q (= n / Dn) 3 – 20 (typical 8.5) • Phase lags -0.1 to +0.2 (2-6 keV vs. 13-30 keV) • X-ray States • Low / Hard sometimes (transitions) • Thermal Dominant generally, no • Steep Power Law yes • Physical Correlations • n proportional to disk flux (not Tdisk; Fpow, etc) • Ampl.(E) roughly like power law flux (harder than disk)

  22. Sensitive Broad-Band Spectra (e.g. XMM) Other Methods to Deduce Disk Structure • Broad Fe Ka Emission in B.H. (Profiles require spin? Which states?) XTEJ1550-564 (INT): Miller et al. 2002 XTE J1650-500 (SPL): Miller et al. 2002 GRS1915 (SPL?) Martocchia et al. 2002 V4641 Sgr (LH?) Miller et al. 2002 • Disk Reflection Spectra (Reflection vs. states?) e.g. Done et al. 1999; Done & Nayakshin 2001

  23. High Resolution Spectra (e.g. Chandra) Other Methods to Deduce Disk Structure • Spectral Lines from Hot Gas • Local outflow? disk winds (e.g. in Cir X-1) but no BH cases yet. • Disk atmosphere (? thick disk at high Lx) GRS1915+105: Lee et al. 2001

  24. Conclusions • Progress in Astrophysics of Black Hole Binaries: • 18 Mass Measurements (4-18 Mo) • Radio : X-ray efforts secure LH state  steady jet • Prospects (3) for measuring spin • Timing + Energetics  framework to probe disk magnetization and other essential variables • Outstanding Problems: • Origin of Steep Power Law component • Strong, Low Frequency QPOs in SPL and INT states • Kerr disk spectral models difficult; (5,000+ X-ray spectra)

More Related