280 likes | 362 Views
Mapping City Wide Travel Times. Andrew Hardin. Project Goal. Encouraging alternate transportation NYC- Bike Share Boulder’s Transportation Management Why? Is using public transit and walking efficient ? in terms of time?.
E N D
Mapping City Wide Travel Times Andrew Hardin
Project Goal • Encouraging alternate transportation • NYC- Bike Share • Boulder’s Transportation Management • Why? • Is using public transit and walking efficient? • in terms of time? intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Go to http://Iskander/TravelTime/ intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
GIS Side Data Preprocessing vs. Simulation web side network side intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Data: GTFS • GTFS = “General Transit Feed Specification”. • Describes transit routes, stops, times, etc. • Google Maps Routing intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Data: OSM • OSM = “Open Street Map”. • “Crowd Sourced”, open source map data. • Downloaded as plain text. intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Why OSM? Source: Boulder County Source: OSM intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Preprocessing OSM • Convert text to a raster grid that represents the friction of distance. • Theory: it’s easier to walk on / near streets. • Extract OSM paths. • Rasterize. • Skeletonize. • Transform with smoothstep intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
1. Extract Paths • OSM contains different types of paths. • Extract all the “highways”, including • Highways • Residential streets • Bike paths • Sidewalks • … intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
2. Rasterize • Convert the vector paths into a tessellation. intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
2. Rasterize • Convert the vector paths into a tessellation. * Brensenham’s Line Algorithm * intersects intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
3. Skeletonize • Goal: get distance (in tiles) from nearest path. • Also called “Medial Axis Transformation”. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 2 2 2 1 0 0 1 2 2 2 1 0 0 1 1 1 1 1 0 0 1 2 3 2 1 0 0 1 2 2 2 1 0 0 1 1 1 1 1 0 0 1 2 2 2 1 0 0 1 2 2 2 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Iterate: For each cell, set its value equal to the minimum of its neighbours + 1. Step 1: Fill raster 1s. Set roads to 0. intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
4. Transform w/ smoothstep • Goal: Convert distance from road (in tiles) to factors of friction. • It takes x times longer to cross this cell. 3 Friction smoothstep function 1 0 75 Distance from nearest path (m) intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Preprocessing: Micro Scale Smoothstep OSM Paths Rasterize Skeletonize 1 0 10 3x intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Preprocessing: Micro Scale Smoothstep OSM Paths Rasterize Skeletonize 1 0 10 3x intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Preprocessing: Square (macro) Smoothstep OSM Paths Rasterize Skeletonize 1 3x intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Preprocessing: Hexagon (macro) Smoothstep OSM Paths Rasterize Skeletonize 1 3x intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Preprocessing: Hexagon (macro) Smoothstep OSM Paths Rasterize Skeletonize 1 3x intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Simulation Parameters • City? (Boulder ,CO) • Where? (latitude, longitude) • When? (December 1, 2013 at 2:30 PM) • Grid Type? (square or hexagon) • Walking Speed? (3.1 m/s) intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Simulation Steps • Construct a connected graph of nodes from our smoothstep grid.
Grid to Graph Node Smoothstep Link * Queen Contiguity intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Grid to Graph (hex) Node Smoothstep Link intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Simulation Steps 2. Given a starting node, walk across the graph finding the fastest path to each node. Weight or Cost Time = friction * walking speed
Friction Cost + Public Transit Constant Cost intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Friction Cost + Public Transit Constant Cost intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Hexagons Squares (Hexagons - Squares) • (Static Differences) intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Hexagons vs. Squares • Computing Cost • Hexagons: 2.5 times longer • Visualization • Simulation Differences • Preprocessing • Contiguity intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions
Wrap-up • Alternate forms of transportation • Is public transit and walking efficient? -in terms of time? intro \ demo \ gis side \ data \ preprocessing \ simulation \ conclusions