60 likes | 275 Views
The Addition Property of Equality. § 2.2. Linear Equations. Linear equations in one variable can be written in the form ax + b = c , where a , b and c are real numbers, and a 0. Equivalent equations are equations that have the same solution. 8 + z = – 8. a.).
E N D
Linear Equations Linear equations in one variable can be written in the form ax + b = c, where a, b and c are real numbers, and a 0. Equivalent equations are equations that have the same solution.
8 + z = – 8 a.) 8 + (– 8) + z = – 8 + – 8 Add –8 to each side. Addition Property of Equality Addition Property of Equality If a, b, and c are real numbers, then a = b and a + c = b + c are equivalent equations. Example: z = – 16 Simplify both sides.
3p + (– 2p) – 11 = 2p + (– 2p) – 18 Add –2p to both sides. p – 11 + 11 = – 18 + 11 Add 11 to both sides. Solving Equations Example: 4p – 11 – p = 2 + 2p – 20 3p – 11 = 2p – 18 (Simplify both sides.) p – 11 = – 18 Simplify both sides. p = – 7 Simplify both sides.
6 – 3z + 4z = – 4z + 4zAdd 4z to both sides. 6 + (– 6) + z = 0 +( – 6) Add –6 to both sides. Solving Equations Example: 5(3 + z) – (8z + 9) = – 4z 15 + 5z – 8z – 9 = – 4zUse distributive property. 6 – 3z = – 4zSimplify left side. 6 + z = 0 Simplify both sides. z = – 6 Simplify both sides.
Word Phrases as Algebraic Expressions Example: Write the following sentence as an equation. The product of – 5 and – 29 gives 145. The product of – 5 and – 29 gives 145 In words: Translate: (– 5) · (– 29) = 145