550 likes | 683 Views
Università degli studi di milano. Docente: Giorgio Valentini Istruttore: Matteo Re. C.d.l. Biotecnologie Industriali e Ambientali. Biologia computazionale. A.A. 2010-2011 semestre II. 6. Evoluzione e filogenesi - 3. Metodi per costruire alberi filogenetici. Bio.
E N D
Università degli studi di milano Docente: Giorgio Valentini Istruttore: Matteo Re C.d.l. Biotecnologie Industriali e Ambientali Biologia computazionale A.A. 2010-2011 semestre II 6 Evoluzione e filogenesi - 3
Metodi per costruire alberi filogenetici Bio Metodi basati su: • Distanza • Massima parsimonia • Massima verosimiglianza Questi li abbiamo visti… Oggi discutiamo questa classe di metodi …
Massima verosimiglianza Bio Verosimiglianza (likelihood) : • Probabilità delle osservazioni dato un modello • Quindi è una probailità … perché usare un nome diverso? • Per porre l’accento sul fatto che non vogliamo valutare quanto siamo confidenti nell’occorrenza di un determinato evento ma piuttosto valutare quanto i dati sono compatibili con un modello evolutivo che abbiamo scelto.
Massima verosimiglianza Bio ESEMPIO : lanciamo una moneta ed otteniamo croce (questo è il dato). Se dovessi chiedervi qual’è la probabilità dell’evento “osservo croce” probabilmente mi rispondereste ½ . Questo implica che avete ipotizzato un modello di “moneta onesta” in cui le probabilità di testa e croce sono entrambe uguali a ½ .
Massima verosimiglianza Bio ESEMPIO : lanciamo una moneta ed otteniamo croce (questo è il dato). Supponiamo di definire un modello di moneta con queste caratteristiche: P(testa=1), P(croce=0) … ossia una moneta truccata. I parametri (tutti) del modello li indichiamo complessivamente come Θ La likelihoddell’osservazione “croce” dato il modello è zero(il che dovrebbe farci venire il dubbio che il modello non è adatto a descrivere i dati osservati) Se utilizzassimo un modello di moneta truccata (due croci) … la likelihoddell’osservazione sarebbe uno
Massima verosimiglianza Bio Quindi la likelihood è la verosimiglianza di un insieme di osservazioni rispetto ad un modello che dovrebbe descrivere il processo da cui i dati sono stati generati. Quindi per valutare la verosimiglianza di un albero filogenetico mediante la tecnica della massima verosimiglianza (maximum likelihood) abbiamo bisogno innanzitutto di un modello evolutivo adatto alle sequenze biologiche. Ma come possiamo costruire un tale modello?
Massima verosimiglianza Bio Nel caso dell’evoluzione molecolare i dati sono rappresentati da un allineamento di sequenze ed il modello, in senso molto ampio, è l’albero filogenetico che: • correla tra di loro le sequenze • descrive il meccanismo di evoluzione da una sequenza all’altra
Massima verosimiglianza Bio L’albero filogenetico ed il modello che descrive il meccanismo attraverso il quale si verificano gli eventi evolutivi, insieme, costituiscono la nostra “ipotesi” rispetto al modo in cui l’evoluzione ha generato le sequenze che stiamo osservando. Consideriamo le due parti separate : ci riferiamo alle relazioni tra le sequenze (i dati) con il termine “albero filogenetico” mentre ci riferiamo alla parte che descrive il meccanismo evolutivo come “modello”.
Massima verosimiglianza Bio L’obiettivo del modello è quello di descrivere il meccanismo attraverso cui le sequenze cambiano nel tempo. Per semplificare i calcoli ci occuperemo di modelli di sequenze di DNA. Immaginiamo inoltre il modello come diviso in due parti principali: 1) Composizione 2) Processo descrive le frequenze con cui le parti della sequenza (nt) cambiano nel tempo
Massima verosimiglianza Bio COMPOSIZIONE: π • Possiamo immaginare un modello in cui ogni nucleotide è presente nelle stesse proporzioni. • Oppure se vogliamo modellare sequenze che provengono da una isola CpG possiamo immaginare un modello in cui C e G hanno frequenza doppia rispetto ad A e T. • In alternativa possiamo lasciare che i dati scelgano per noi (nel senso che utilizzeremo delle frequenze nucleotidiche ottenute dai dati che stiamo esaminando).
Massima verosimiglianza Bio PROCESSO: P • Questa parte del modello descrive le frequenze con cui un nucleotide muta in un altro … quindi è una matrice n x n (n = numero possibili nucleotidi). ad esempio:
Massima verosimiglianza Bio PROCESSO: P • NB: per convenzione sia le righe che le colonne della matrice corrispondono ai nucleotidi in ordine alfabetico (quindi: a,c,g,t) * P ac Righe sommano a 1 * Alla mutazione a c è quindi assegnata una probabilità pari a 0.01
Massima verosimiglianza Bio ESEMPIO 1 : likelihood di una sequenza di 1 nt • Esempio semplice: 1 sola sequenza, 1 solo nt, nessun albero. La sequenza è: a Osservazioni: Non c’è cambiamento (abbiamo solo una sequenza, quindi non abbiamo bisogno della parte PROCESSO del modello). Ci serve solo la parte COMPOSIZIONE.
Massima verosimiglianza Bio ESEMPIO 1 : likelihood di una sequenza di 1 nt • Esempio semplice: 1 sola sequenza, 1 solo nt, nessun albero. La sequenza è: a Se come composizione utilizziamo le seguenti frequenze π = [1, 0 , 0 , 0 ] allora la likelihood della sequenza “a” è 1. Anche nel caso del vettore delle frequenze l’ordine delle frequenze è, per convenzione, quello dei nucleotidi in ordine alfabetico. La somma dei valori deve essere 1.
Massima verosimiglianza Bio ESEMPIO 2 : likelihood di una sequenza di 2 nt • Esempio semplice: 1 sola sequenza, 2 nt, nessun albero. La sequenza è: ac Se come composizione utilizziamo le frequenze nucleotidiche del modello di Jukes-Cantor ( π = [¼ , ¼ , ¼ , ¼ ] ) allora la likelihood della sequenza “ac” è: πa x πc = ¼ x ¼ = 1/16
Massima verosimiglianza Bio ESEMPIO 2 : likelihood di una sequenza di 2 nt • Esempio semplice: 1 sola sequenza, 2 nt, nessun albero. La sequenza è: ac Se come composizione utilizziamo le seguenti frequenze nucleotidiche, π = [0.4, 0.1 , 0.2 , 0.3 ] allora la likelihood della sequenza “ac” è: πa x πc = 0.4 x 0.1 = 0.04 Se calcoliamo la likelihood di tutti i possibili dinucleotidi la somma deve essere uguale a 1. Indipendentemente dal contenuto di π
Massima verosimiglianza Bio ESEMPIO 2 : likelihood di una sequenza di 2 nt • Esempio semplice: 1 sola sequenza, 2 nt, nessun albero. La sequenza è: ac Se come composizione utilizziamo le seguenti frequenze nucleotidiche, π = [0.4, 0.1 , 0.2 , 0.3 ] allora la likelihood della sequenza “ac” è: πa x πc = 0.4 x 0.1 = 0.04 Se calcoliamo la likelihood di tutti i possibili dinucleotidi la somma deve essere uguale a 1. Indipendentemente dal contenuto di π
Massima verosimiglianza Bio ESEMPIO 3: likelihood di un albero con un solo ramo Vogliamo calcolare la likelihood di un albero formato da 1 solo ramo. Questo implica che abbiamo 2 sequenze: c c a t c c g t Per calcolare likelihood ci servono tutte le parti del modello … sia π che P (P serve quando abbiamo più di una sequenza)
Massima verosimiglianza Bio ESEMPIO 3: likelihood di un albero con un solo ramo c c a t π = [0.1, 0.4 , 0.2 , 0.3] c c g t likelihood
Massima verosimiglianza Bio ESEMPIO 3: Osservazioni • Le probabilità associate alle colonne (composizione * processo) vengono moltiplicate … assunzione di indipendenza. • In questo esempio non teniamo conto delle diverse lunghezze dei rami (se avessimo più rami il modello non sarebbe in grado di gestirli separatamente) likelihood
Massima verosimiglianza Bio ESEMPIO 3: Osservazioni • Come è possibile modificare il modello in modo da ammettere l’esistenza di rami di lunghezza diversa? • Quale parte del modello descrive i rami? • In cosa differiscono i rami di lunghezze diverse? likelihood
Massima verosimiglianza Bio Lunghezza dei rami: • Dipende dalla parte del modello che descrive il processo. Questa matrice descrive un ramo con una “certa distanza evolutiva” … che non conosciamo. Immaginiamo che corrisponda ad una distanza pari a 1 cde.
Massima verosimiglianza Bio Lunghezza dei rami: • Un ramo di lunghezza 1 cde sembra essere un ramo abbastanza corto. Valori fuori dalla diagonale bassi: Poco probabile che un nt muti in un altro … Valori sulla diagonale alti: Molto probabile che un nt non cambi
Massima verosimiglianza Bio Lunghezza dei rami: • Un ramo di lunghezza 1 cde sembra essere un ramo abbastanza corto. NB: man mano che la lunghezza del ramo cresce i valori nella matrice P diminuiscono lungo la diagonale ed aumentano al di fuori di essa.
Massima verosimiglianza Bio Lunghezza dei rami: • La likelihood calcolata in esempio 3 era per un ramo avente lunghezza pari a 1 unità cde … e se volessimo calcolare la likelihood per un ramo di 2 cde? MOLTIPLICHIAMO LA MATRICE PER SE’ STESSA !
Massima verosimiglianza Bio Lunghezza dei rami: c c a t c c g t • La likelihood calcolata per questo allineamento (branch length = 1 cde) era 0.0000300, per 2 cde sarebbe 0.0000559 (è aumentata), per 3 cde sarebbe 0.000782. La likelihood cresce indefinitamente? Taxon A A B x ced Taxon B
Massima verosimiglianza Bio NO ! Esiste un valore massimo: Likelihood raggiunge un valore massimo in un punto compreso tra 10 e 20 cde (ced in EN)
Massima verosimiglianza Bio Relazione tra π e P: Se eleviamo la matrice P ad un esponente molto alto, otteniamo delle probabilità tendenti alle frequenze contenute in π! Quindi π è già “codificato” nella matrice P che descrive il processo (evolutivo) . E’ come se le frequenze di sostituzione codificate in P, dopo un tempo evolutivo infinito, debbano convergere a π .
Massima verosimiglianza Bio Matrici di velocità: Se vogliamo calcolare il valore di 54 possiamo calcolarlo come e4*log(5). Possiamo operare nello stesso modo sulla matrice che rappresenta la parte del modello dedicata al processo: P4 = e( 4 * log(P) ) Vantaggi: • Possiamo usare esponenti non interi. • Possiamo separare completamente le parti del modello dedicate alla composizione ed al processo. • Possiamo esprimere lunghezza rami in sost. per sito Inoltre possiamo usare come lunghezza dei rami qualsiasi numero da 0 a infinito
Massima verosimiglianza Bio Matrici di velocità: Il logaritmo della matrice P dei nostri esempi è: Le righe sommano a 0, la velocità corrisponde ad 1 cde ed e log P restituisce, di nuovo, la matrice P.
Massima verosimiglianza Bio Matrici di velocità: Questa matrice di velocità esprime una velocità di 1 cde … è già un passo avanti ma vorremmo una matrice M il cui esponenziale eM restituisce una matrice corrispondente ad 1 sostituzione per sito.
Massima verosimiglianza Bio Matrici di velocità : scalare la matrice che descrive il processo ad una velocità di 1 sost. per sito Possiamo ottenere questo risultato scalando log P in modo tale che, se moltiplichiamo le sue righe per πrow la SOMMA dei valori al di fuori della diagonale sia 1. In questo modo otteniamo la matrice il cui esponenziale corrisponde a rami da 1 sostituzione per sito. In generale eQ(v) = P(v) per un ramo di lunghezza v sost. per sito.
Massima verosimiglianza Bio Matrici di velocità : Se scaliamo la matrice log P per un valore v=50 ( 50 sost. sito) otteniamo Se moltiplichiamo Q per πdiag (matrice avente i valori di π sulla diagonale) otteniamo Una matrice in cui i valori fuori diagonale sommano a 1 (e quelli sulla diagonale a -1)
Massima verosimiglianza Bio Matrici di velocità : Se moltiplichiamo Q per πdiag (matrice avente i valori di π sulla diagonale, a volte indicata con Π ) otteniamo L’esponenziale di questa matricegenera una matrice P utilizzabile per produrre un albero i cui rami hanno lunghezza espressa in sostituzioni per sito. Una matrice in cui i valori fuori diagonale sommano a 1
Massima verosimiglianza Bio Separazione completa della composizione dalle velocità: Se dividiamo le colonne di Q per πcol otteniamo la matrice delle velocità R , e separiamo la composizione dalle velocità. L’effetto è che possiamo utilizzare la stessa matrice R per diversi vettori di composizione. La matrice R per gli esempi visti finora è:
Massima verosimiglianza Bio Separazione completa della composizione dalle velocità: Rispetto alla matrice R (matrice velocità): • Gli elementi sulla diagonale non contano (trattasi do velocità di sost. e gli elementi sulla diagonale esprimono delle “non sostituzioni”). • Lo scaling di Q non ha effetto • Se vogliamo un modello reversibile la matrice R dovrebbe essere simmetrica.
Massima verosimiglianza Bio Interconversione tra P, Q ed R: NB: i programmi per analisi filogenetiche basati su maximum likelihood rendono le conversioni tra queste matrici completamente automatiche.
Massima verosimiglianza Bio Massima verosimiglianza, lunghezze dei rami in sostituzioni per sito: La verosimiglianza dell’allineamento di ccat e ccgt a diverse distanze è Il valore massimo può essere trovato numericamente mediante approssimazioni successive. Si trova ad una lunghezza del ramo pari a 0.330614 (valore likelihood: 0.0001777). Data una topologia è possibile trovare le lunghezze dei rami massimizzando la likelihood
Massima verosimiglianza Bio Massima verosimiglianza: albero con 2 rami Per la matrice Q delle slide precedenti le matrici P corrispondenti a 0.1, 0.2 e 0.3 sostituzioni per sito sono: origine 0.1 A O 0.2 B
Massima verosimiglianza Bio Massima verosimiglianza: albero con 2 rami Ci sono 3 modi di calcolare la likelihood di quest’albero … origine 0.1 A O 0.2 B
Massima verosimiglianza Bio Massima verosimiglianza: albero con 2 rami Modo 1: in un unico passo origine A O 0.3 B likelihood
Massima verosimiglianza Bio Massima verosimiglianza: albero con 2 rami Modo 2:in 2 passi … da A a O e poi da O a B π = [0.1, 0.4 , 0.2 , 0.3] Usiamo π perché partiamo da A ! origine 0.1 A O PROBLEMA: non conosciamo la sequenza di O ! c c a t ? ? ? ? 0.2 B CONSIDERIAMO 1 SOLO SITO: Le possibilità sono c a c c c g c t SOMMIAMO TUTTE LE PROBABILITA’
Massima verosimiglianza Bio Massima verosimiglianza: albero con 2 rami Modo 2:in 2 passi … da A a O e poi da O a B origine 0.1 A PROBLEMA: non conosciamo la sequenza di O ! c c a t ? ? ? ? O 0.2 B likelihood
Massima verosimiglianza Bio Massima verosimiglianza: albero con 2 rami Modo 2:in 2 passi … da A a O e poi da O a B origine 0.1 A Quando aggiungiamo nel calcolo il secondo ramo (da O a B) NON serve includere π … ma solo le probabilità di arrivo a C partendo da qualsiasi nt. c c a t ? ? ? ? c c g t O 0.2 B likelihood Likelihood per 1 sito … se moltiplico likelihood dei 4 siti ottengo: 0.000177 (come prima)
Massima verosimiglianza Bio Massima verosimiglianza: albero con 2 rami Modo 3:in 2 passi … da O a A + da O a B origine 0.1 A PROBLEMA: non conosciamo la sequenza di O ! c c a t ? ? ? ? c c g t O 0.2 B likelihood Likelihood tot. allineamento: 0.000177
Massima verosimiglianza Bio Massima verosimiglianza: albero con 2 rami 3 Modi diversi:stesso valore di likelihood 0.1 A O 0.2 B NB: Non importa dove mettiamo la radice … il valore della likelihood E’ LO STESSO !!!!!
Massima verosimiglianza Bio Massima verosimiglianza: albero con 3 rami Allineamento: A c c a t B c c g t C g c a t Albero: A 0.1 C O 0.3 0.2 B Consideriamo come origine il nodo interno ed iniziamo da qui il calcolo della likelihood ( come in Modo 3 dell’esempio precedente)
Massima verosimiglianza Bio Massima verosimiglianza: albero con 3 rami Allineamento: Albero: A c c a t B c c g t C g c a t A 0.1 C O 0.3 0.2 B likelihood (primo sito)
Massima verosimiglianza Bio Massima verosimiglianza: albero con 3 rami Allineamento: Albero: A c c a t B c c g t C g c a t A 0.1 C O 0.3 0.2 B Dopo aver calcolato la likelihood per ognuno dei 4 siti, dato che consideriamo le colonne dell’allineamento indipendenti possiamo moltiplicare per ottenere la likelihood totale: 0.0204 * 0.245 * 0.00368 * 0.166 =3.04 * 10-6
Massima verosimiglianza Bio Fattori che complicano il problema: • La selezione agisce su parti diverse delle sequenze (pressione selettiva condivisa da tutti i taxa potrebbe riguardare solo una parte molto ristretta dell’allineamento multiplo) • Alcuni siti evolvono velocemente • Alcuni siti evolvono molto lentamente (alcuni siti poi non variano del tutto. Questo dipende dalle distanze evolutive tra i taxa e dal gene scelto)