560 likes | 691 Views
Generic Positional Containers and Double-Ended Queues. Andy Wang Data Structures, Algorithms, and Generic Programming. Generic Positional Containers. A generic container C Stores elements by position vector[i] = ‘a’; list.insert(I, ‘a’); A template class for a proper type T
E N D
Generic Positional Containers and Double-Ended Queues Andy Wang Data Structures, Algorithms, and Generic Programming
Generic Positional Containers • A generic container C • Stores elements by position • vector[i] = ‘a’; • list.insert(I, ‘a’); • A template class for a proper type T • C<T> is a proper type • C<T> is capable of storing a number of T objs • C<T> supports an iterater class C<T>::Iterator
More on Generic pContainers • Organized and accessed by position • Can insert any T object at any position in C<T> • Can remove any T object at any position in C<T> • Can support • PushFront(), PopFront(), Front() • PushBack(), PopBack(), Back()
Traditional Double-Ended Queue Class • Deque (pronounced “deck”) • Deque operations • Push/Pop at either end • Retrieve data from either end • Proper type
Traditional Double-Ended Queue Class (2) • Assumptions on element type T (proper type) • Constructor T() and destructor ~T() • Copy constructor • Assignment operator=
Specifying TDeque<T> • Traditional assumptions, plus • O(1) average runtime, O(Size()) space • PushFront(t), PopFront(), Front() • PushBack(t), PopBack(), Back() • O(1) time and space for iterator opeartions • Random access iterators ([], pointer arithmetics)
TDeque<T> Implementation Plan • Circular array • Protected array content of size content_size • Illusion: content[content_size] == content[0]
begin end TDeque<T> D Illustrated • content_size = 8 • D.Empty() == true content
begin end TDeque<char> D Illustrated (2) • content_size = 8 • D.PushBack(‘M’) content
begin end TDeque<char> D Illustrated (3) • content_size = 8 • D.PushBack(‘e’) content
begin end TDeque<char> D Illustrated (4) • content_size = 8 • D.PushBack(‘r’) content
begin end TDeque<char> D Illustrated (5) • content_size = 8 • D.PushBack(‘r’) content
begin end TDeque<char> D Illustrated (6) • content_size = 8 • D.PushBack(‘y’) content
begin end TDeque<char> D Illustrated (7) • content_size = 8 • D.PopFront() • O(1) content
begin end TDeque<char> D Illustrated (8) • content_size = 8 • D.PopFront() content
begin end TDeque<char> D Illustrated (9) • content_size = 8 • D.PushBack(‘G’) content
begin end TDeque<char> D Illustrated (10) • content_size = 8 • D.PushBack(‘o’) • D.Size() == (7 – 2 + 8) % 8 content
begin end TDeque<char> D Illustrated (11) • content_size = 8 • D.PushBack(‘A’) • D.Size() = (0 – 2 + 8) % 8 content
begin end TDeque<char> D Illustrated (12) • content_size = 8 • D.PushBack(‘r’) content
begin end TDeque<char> D Illustrated (13) • D.Size() == content_size – 1 • Return full or • Double the capacity content
TDeque<T> Implementation Plan (2) • Relative Indexing • Protected integers begin, end • Element position relative to begin • Front element is content[begin] • Back element is content[end – 1] • Size is (end – begin + content_size) % content_size
TDeque<T> Implementation Plan (3) • Class Bracket Operator • Similar to TVector • Distinguished from TDeque Iterator bracket operation
TDeque<T>::Iterator Implementation Plan • Public interface • Start with the public interface of TList<T>::Iterator • Add bracket operator • Add “pointer arithmetic” • Protected data • Pointer to a specific TDeque<T> object • A deque index value
Defining TDeque<T> template <typename T> class TDeque { public: typedef T value_type; // type definitions typedef TDequeIterator<T> Iterator; TDeque(); // constructors and deconstructor TDeque(size_t, const T&); TDeque(const TDeque<T>&); ~TDeque(); // display functions void Display(ostream& os, char ofc = ‘\0’) const; void Dump(ostream& os) const;
Defining TDeque<T> (2) int Empty() const; // container read-only routines size_t Size() const; T& Front() const; T& Back() const; T& operator[] (size_t) const; int PushFront(const T&); // container write routines int PopFront(); int PushBack(const T&); int PopBack(); TDeque<T>& operator=(const TDeque<T>&);
Defining TDeque<T> (3) friend class TDequeIterator<T>; // iterator support Iterator Begin() const; Iterator End() const; protected: T* content; size_t content_size, begin, end; };
Defining TDeque<T> (4) // operator overloads (friend status not required) template<class T> ostream& operator<<(ostream& os, const TDeque<T>& a); template<class T> int operator==(const TDeque<T>&, const TDeque<T>&); template<class T> int operator!=(const TDeque<T>&, const TDeque<T>&);
Defining TDequeIterator<T> template <typename T> class TDequeIterator { friend class TDeque<T>; public: typedef T value_type; // terminology support TDequeIterator(); // constructors TDequeIterator(const TDeque<T>& I); TDequeIterator(const TDequeIterator<T>& I); TDequeIterator(const size_t& i); T& Retrieve() const; // return ptr to current Tval int Valid() const; // cursor is valid element
Defining TDequeIterator<T> (2) // various operators int operator==(const TDequeIterator<T>& I2) const; int operator!=(const TDequeIterator<T>& I2) const; T& operator*() const; // return reference to current Tval T& operator[] (size_t i) const; // return ref to Tval at index TDequeIterator<T>& operator=(const TDequeIterator<T>& I); TDequeIterator<T>& operator++(); // prefix TDequeIterator<T> operator++(int); // postfix TDequeIterator<T>& operator--(); // prefix TDequeIterator<T> operator--(int); // postfix
Defining TDequeIterator<T> (3) // pointer arithmetic long operator-(const TDequeIterator<T>& I2) const; TDequeIterator<T>& operator+=(long n); TDequeIterator<T>& operator-=(long n); TDequeIterator<T> operator+(long n) const; TDequeIterator<T>& operator+=(int n); TDequeIterator<T>& operator-=(int n); TDequeIterator<T> operator+(int n) const; TDequeIterator<T>& operator+=(unsigned long n); TDequeIterator<T>& operator-=(unsigned long n); TDequeIterator<T> operator+(unsigned long n) const; TDequeIterator<T>& operator+=(unsigned int n); TDequeIterator<T>& operator-=(unsigned int n); TDequeIterator<T> operator+(unsigned int n) const;
Defining TDequeIterator<T> (3) protected: const TDeque<T>* Qptr; size_t index; };
Implementing TDeque<T> • Default constructor template <typename T> TDeque<T>::TDeque() : content(0), begin(0), end(0), content_size(0) { content = new T[default_content_size]; if (content == 0) { // error } content_size = default_content_size; }
Implementing TDeque<T> (2) • Copy constructor template <typename T> TDeque<T>::TDeque(const TDeque<T>& Q) : content_size(Q.content_size), begin(Q.begin), end(Q.end) { content = new T[content_size]; if (content == 0) { // error } for (size_t j = 0; j < content_size; j++) { content[j] = Q.content[j]; } }
Implementing TDeque<T> (3) • Read-only functions template <typename T> size_t TDeque<T>::Size() const { return (end – begin + content_size) % content_size; } template <typename T> T& TDeque<T>::operator[] (size_t i) const { if (Size() <= i) { // error } return (i + begin) % content_size; }
Implementing TDeque<T> (4) • Display functions template <typename T> void TDeque<T>::Display(ostream& os, char ofc) const { for (size_t j = 0; j < Size(); ++j) { os << operator[](j); if (ofc != ‘\0’) { os << ofc; } } } template <typename T> void TDeque<T>::Dump(ostream& os) const { for (size_t j = 0; j < content_size; ++j) { // print } }
Implementing TDeque<T> (5) • Read-only operator overloads template <typename T> ostream operator<<(ostream& os, const TDeque<T>& Q) { Q.Display(os); return(os); } template <typename T> int operator==(const TDeque<T>& Q1, const TDeque<T>& Q2) { if (Q1.Size() != Q2.Size()) { return 0; } for (size_t j = 0; j < Q1.Size(); ++j) { if (Q1[j] != Q2[j]) { return 0; } } return 1; }
Implementing TDeque<T> (6) • Read-only operator overloads template <typename T> int operator!=(const TDeque<T>& Q1, const TDeque<T>& Q2) { return !(Q1 == Q2); }
Implementing TDeque<T> (7) • Read-only functions template <typename T> int TDeque<T>::Empty() const { return begin == end; } template <typename T> void TDeque<T>::Clear() { begin = end = 0; }
Implementing TDeque<T> (8) • Read-only functions template <typename T> T& TDeque<T>::Front() const { // check for empty TDeque return content[begin]; } template <typename T> T& TDeque<T>::Back() const { // check for empty TDeque return (end – 1 + content_size) % content_size; }
Implementing TDeque<T> (9) • Iterator support template <typename T> TDequeIterator<T> TDeque<T>::Begin() const { TDeque<T>::Iterator I; I.Qptr = this; I.index = 0; return I; } template <typename T> TDequeIterator<T> TDeque<T>::End() const { TDeque<T>::Iterator I; I.Qptr = this; I.index = Size(); return I; }
Implementing TDeque<T> (10) • Assignment template <typename T> TDeque<T>& TDeque<T>::operator=(const TDeque<T>& Q) { if (this != &Q) { T* newcontent = new T[Q.content_size]; // check for allocation delete[] content; content = newcontent; content_size = Q.content_size; begin = Q.begin; end = Q.end; // copy queue elements } return *this; }
Implementing TDeque<T> (11) • PushBack template <typename T> int TDeque<T>::PushBack(const T& Tval) { if (Size() + 1 >= content_size) { // deque is full unsigned j, k; size_t newcontent_size = 2 * content_size; if (content_size == 0) newcontent_size = 2; T* newcontent = new T[newcontent_size]; // check for allocation error for (j = k = begin; j != end; j = (j + 1) % content_size, ++k) { newcontent[k] = content[j]; }
Implementing TDeque<T> (12) • PushBack if (begin < end) { begin += content_size; } delete[] content; content = newcontent; content_size = newcontent_size; } content[end] = Tval; end = (end + 1) % content_size; return 1; }
Implementing TDeque<T> (13) • PushFront template <typename T> int TDeque<T>::PushFront(const T& Tval) { if (Size() + 1 >= content_size) { // deque is full unsigned j, k; size_t newcontent_size = 2 * content_size; if (content_size == 0) newcontent_size = 2; T* newcontent = new T[newcontent_size]; // check for allocation error for (j = k = begin; j != end; j = (j + 1) % content_size, ++k) { newcontent[k] = content[j]; }
Implementing TDeque<T> (14) • PushFront if (begin < end) { begin += content_size; } delete[] content; content = newcontent; content_size = newcontent_size; } begin = (begin – 1 + content_size) % content_size; content[begin] = Tval; return 1; }
Implementing TDeque<T> (15) • Pop routines template <typename T> int TDeque<T>::PopFront() { if (begin == end) return 0; begin = (begin + 1) % content_size; return 1; } template <typename T> int TDeque<T>::PopBack() { if (begin == end) return 0; end = (end – 1 + content_size) % content_size; return 1; }
Implementing TDequeIterator<T> • Constructors template <typename T> TDequeIterator<T>::TDequeIterator() : Qptr(0), index(0) { } template <typename T> TDequeIterator<T>::TDequeIterator(const TDeque<T>& Q) : Qptr(&Q), index(0) { } template <typename T> TDequeIterator<T>::TDequeIterator(const TDequeIterator<T>& I) : Qptr(I.Qptr), index(I.index) { }
Implementing TDequeIterator<T> (2) • Initialization routines template <typename T> void TDequeIterator<T>::Initialize(const TDeque<T>& Q) { Qptr = &Q; index = 0; } template <typename T> void TDequeIterator<T>::rInitialize(const TDeque<T>& Q) { Qptr = &Q; index = Q.Size() – 1; }
Implementing TDequeIterator<T> (3) • Helper functions template <typename T> int TDequeIterator<T>::Valid() const { if (Qptr == 0) return 0; if (index >= Qptr->Size()) return 0; return 1; } template <typename T> T& TDequeIterator<T>::operator[] (size_t i) const { if (!Qptr) { // error } return Qptr->operator[](index + i); }
Implementing TDequeIterator<T> (4) • Helper functions template <typename T> T& TDequeIterator<T>::Retrieve() const { // check for validity return Qptr->operator[](index); } template <typename T> T& TDequeIterator<T>::operator* () const { if (Qptr == 0) { // error } if (Qptr->Size() == 0) { // error } return Qptr->operator[](index); }