310 likes | 323 Views
This lecture covers deterministic planning methods in project management, including network techniques like CPM and PDM, types of relationships, lag and lead, and float calculation in project scheduling. Learn efficient planning strategies here!
E N D
1.040/1.401Project ManagementSpring 2007Lecture 9Deterministic Planning Part II Dr. SangHyun Lee lsh@mit.edu Department of Civil and Environmental Engineering Massachusetts Institute of Technology
Project Management Phase DESIGN PLANNING DEVELOPMENT OPERATIONS CLOSEOUT FEASIBILITY Fin.&Eval. Organization Risk Estimating Planning & Scheduling
Outline • Network Techniques • CPM • PDM • Linear Scheduling Method
Precedence Diagram Method (PDM) Gantt chart A (10) B (10) Activity B will start right after Activity A finishes CPM (AON) A 10 B 10 A (10) Activity B will start right after Activity A starts B (10)
Precedence Diagram Method (PDM) • PDM Extends CPM to include • Multiple relationships beyond Finish-to-Start • Finish-to-Finish • Start-to-Start • Start-to-Finish
PDM – Types of Relationships A B • FS Finish-to-start • SS Start-to-start • FF Finish-to-finish • SF Start-to-finish A B A B A B
Precedence Diagram Method (PDM) Gantt chart A (10) B (10) Activity B will start after Activity A finishes CPM (AON) A 10 B 10 A (10) Activity B will start 5 days later after Activity A finishes (5) B (10) A 10 A’ 5 B 10
Precedence Diagram Method (PDM) • PDM Extends CPM to include • Lag (+) & Lead (-) A (10) FS (+5) B (10) A (10) FS (-5) B (10)
PDM Relationships w/ Lag & Lead Lay-Out & Excavate Finish-to-StartLead Finish-to-StartLag Start-to-StartLead Start-to-StartLag Install Fuel Tanks FS -1 Pour 4th-Floor Slab Remove 4th Floor Shoring FS +14 SS -1 Backfill Pipe Install Pipe Install Fuel Tanks Install Exterior Conduits SS +1 Adapted from: Callahan et al., 1992
Form Slab on Grade FF -1 Reinforce Slab on Grade Excavate Trench FF +3 Lay Pipe Approve SF -1 Prepare Wall Shop Drawings SF +10 Install Wood Paneling & Base Install Carpeting PDM Relationships w/ Lag & Lead Finish-to-FinishLead Finish-to-FinishLag Start-to-FinishLead Start-to-FinishLag Adapted from: Callahan et al., 1992
Slack or Float in PDM • Total Float (TF) • TF(k) = LF(k) - ES(k) - Dk • Start Float (SF) • SF(k) = LS(k) - ES(k) • Finish Float (FNF) • FNF(k) = LF(k) - EF(k)
PDM Example 30 10 1 C GC A GC 2 3 3 40 80 90 100 D EL H ME K ME FINISH 2 6 2 0 1 1 ES EF START LS LF D TF SF FNF 20 50 B GC E ME 4 4 60 70 2 F GC G EL 6 3 Source: Callahan et al., 1992
Forward Pass 30’s ES = 10’s EF + Lag (FS) 30 10 1 3 6 0 4 C GC A GC 2 3 3 40 80 90 100 D EL H ME K ME FINISH 2 6 2 0 1 1 0 0 START LS LF D TF SF FNF 20 50 4 0 B GC E ME 4 4 60 70 2 F GC G EL 6 3 Source: Callahan et al., 1992
Forward Pass 30 10 1 3 6 0 4 C GC A GC 100’s ES = 90’S EF 100’s ES = 70’s EF MAX 2 3 3 40 80 90 100 17 17 15 9 9 17 7 15 D EL H ME K ME FINISH 2 6 2 0 1 1 0 0 START LS LF D TF SF FNF 20 50 4 0 8 4 B GC E ME 4 4 60 70 2 15 12 12 6 F GC G EL 6 3 Source: Callahan et al., 1992
Backward Pass 30 10 1 3 6 0 4 C GC A GC 2 3 3 40 80 90 100 17 17 15 9 9 17 7 15 D EL H ME K ME FINISH 9 17 17 17 15 15 2 6 2 0 1 1 0 0 START D TF SF FNF 20 50 4 0 8 4 B GC E ME 4 4 60 70 2 15 12 12 6 F GC G EL 17 14 70’s LF = 100’S LS 70’s LS = 80’s LF - 1 6 3 MIN Source: Callahan et al., 1992
Backward Pass 30 10 1 3 6 0 4 C GC A GC 0 4 3 6 2 3 3 40 80 90 100 17 17 15 9 9 17 7 15 D EL H ME K ME FINISH 9 7 17 17 9 17 15 15 2 6 2 0 1 1 0 0 START 0 0 D TF SF FNF 20 50 4 0 8 4 B GC E ME 9 1 5 5 4 4 1’s LF = 10’S LS 1’s LF = 20’s LS 60 70 MIN 2 15 12 12 6 F GC G EL 8 17 14 14 6 3 Source: Callahan et al., 1992
Total Slack or Float 30 10 1 3 6 0 4 C GC A GC 0 4 3 6 TS or TF = LF - ES - D 2 0 0 3 3 40 80 90 100 17 17 15 9 9 17 7 15 D EL H ME K ME FINISH 9 7 17 17 9 17 15 15 2 6 0 2 0 0 0 0 1 1 0 0 START 0 0 D 0 SF FNF 20 50 4 0 8 4 B GC E ME 9 1 5 5 4 4 1 1 60 70 2 15 12 12 6 F GC G EL 8 17 14 14 6 3 2 2 Source: Callahan et al., 1992
Critical Path 30 10 1 3 6 0 4 C GC A GC 0 4 3 6 2 0 0 3 3 40 80 90 100 17 17 15 9 9 17 7 15 D EL H ME K ME FINISH 9 7 17 17 9 17 15 15 2 6 0 2 0 0 0 0 1 1 0 0 START 0 0 D 0 SF FNF 20 50 4 0 8 4 B GC E ME 9 1 5 5 4 4 1 1 60 70 2 15 12 12 6 F GC G EL 8 17 14 14 6 3 2 2 Source: Callahan et al., 1992
Start & Finish Slack or Float 30 10 1 3 6 0 4 C GC A GC 0 4 3 6 2 0 0 3 0 0 0 0 3 40 80 90 100 17 17 15 9 9 17 7 15 D EL H ME K ME FINISH 9 7 17 17 9 17 15 15 2 6 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 START 0 0 D 0 0 0 20 50 4 0 8 4 B GC E ME 9 1 5 5 4 4 1 1 1 1 1 1 60 70 2 15 12 12 6 F GC G EL 8 17 14 14 6 3 2 2 2 2 2 2 Source: Callahan et al., 1992
PDM Caveat: Vanishing Critical Path • Tracing critical path can be difficult • Finish-finish constraints with leads can lead to “vanishing” critical path FF -5 Total float Duration
PDM Caveat - Counter-Intuitive • Tracing critical path can be difficult • Can be counter-intuitive • The longer A20 is, the smaller the critical path duration and quicker can complete! A30 FF 2 A20 SS 0 A10
Slack or Float “Ownership” • Tension between owner and contractor • Significant legal implications • Problem: • Owners seek to push contractors on tight schedule • Too many late starts risk overall project duration • Contractors seek flexibility • Flexibility has value
Outline • Network Techniques • CPM • PDM • Linear Scheduling Method
Linear Scheduling Method (LOM) • Line-of-Balance • Time + Location • Repetitive Linear Activities • Rate of Progress (production rate)
LSM Diagram Source: Callahan et al., 1992
Plotting Activity Progress Lines Source: Callahan et al., 1992
Use of Restraint on LSM Diagram Source: Callahan et al., 1992
Activity Interference Source: Callahan et al., 1992
Use of Activity Buffers in LSM Schedules Source: Callahan et al., 1992
LSM – Example LinearPlus
LSM – Example Tilos