1 / 19

Digital Signatures

Learn how digital signatures provide authenticity and security for online transactions. Discover the importance of certificates in establishing trust and verifying identities in a distributed environment.

Download Presentation

Digital Signatures

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Digital Signatures Dan Fleck CS 469: Security Engineering 1 Coming up: Digital Signatures These slides are modified with permission from Bill Young (Univ of Texas)

  2. Digital Signatures Suppose you write a (physical) check. What would you like to be true? • A check is a tangible object authorizing the transaction. • The signature on the check confirms authenticity. • In the case of an alleged forgery, a third party may be called to judge authenticity. • The check is not alterable or alterations can be easily detected. • The signature is part of the check, so cannot be easily removed and re-used. Can we define a mechanism for signing a document digitally that has analogous characteristics? 2 Coming up: Digital Signatures Properties

  3. Digital Signatures Properties Suppose S sends a message M to R with signature f (S, M): We’d like the signature to have certain properties: unforgeable: it should be difficult for anyone but S to produce f (S, M); authentic: R can verify that S signed the document M; no repudiation: S cannot deny producing the signature; tamperproof: after being transmitted, M cannot be modified; not reusable: the signature cannot be detached and reused for another message. 3 Coming up: Digital Signatures (Cont.)

  4. Digital Signatures (Cont.) Public key systems are well-suited for digital signatures. Recall that some algorithms, RSA in particular, have the following characteristic: So, if S wishes to send message M to R in a way that has some of the characteristics of a digitally signed message, S could send Most often, it’s not the M but a hash of M that is signed. Why? What assurance does R gain from this interchange? 4 Coming up: Digital Signatures Properties

  5. Digital Signatures Properties S sends to R the following message: This scheme has the desired properties: unforgeable: only S can use KS-1 ; authentic: a third party can verify the signature with KS ; no repudiation: only S can use KS-1; tamperproof: only R can remove the outer layer of encryption; not reusable: the signature is tightly bound to the message M. 5 Coming up: Lessons

  6. Lessons • Digital signatures function much as physical signatures. • Ideally a signature should be: unforgeable, authentic, tamperproof, non-reusable, and allow no repudiation. • Public key cryptosystems facilitate creating digital signatures. 6 Coming up: Certificates

  7. Certificates Dan Fleck CS 469: Security Engineering 7 Coming up: Web of Trust These slides are modified with permission from Bill Young (Univ of Texas)

  8. Web of Trust Much of what happens on-line, particularly e-commerce, depends on establishing a web of trust relationships among the parties. Question: Why should A trust B with whom he’s never previously dealt? Possible Answer: A might rely on a known third party to “vouch for” B. The Chamber of Commerce, Better Business Bureau, credit reporting agencies, friends all function in part as certification authorities for some commercial transactions. 8 Coming up: Need for Trust

  9. Need for Trust With a public key infrastructure (PKI), if A knows B’s public key, then A can: • send a message securely to B; • be assured that a message from B really originated with B. But, how does A know that the public key B presents is really B’s public key and not someone else’s? The most common circumstance in which trust is needed in a distributed on-line context is reliably binding a public key to an identity. 9 Coming up: Certificates

  10. Certificates A certificateis the electronic equivalent of a “letter of introduction.” A certificate is constructed with digital signatures and hash functions. A public key and a user’s identity are bound together within a certificate, signed by a certification authority, vouching for the accuracy of the binding 10 Coming up: How it Might Work

  11. How it Might Work Suppose X is the president of a company; Y is her subordinate. Each have an RSA public key pair. • Y securely passes message {Y ,KY } to X. • X produces a cryptographic hash of the message, i.e., h({Y ,KY }). • X produces This last then becomes Y ’s certificate, signed by X 11 Coming up: Validating the Certificate

  12. Validating the Certificate Suppose Y presents to Z the certificate : What does Z do with this? What does Z learn? • The message certifies the binding of Y and KY . • X is the certifying authority. • Data items Y and KY were not altered or corrupted. This scheme assumes that Z has a trustworthy public key for X, to verify X’s signature. 12 Coming up: Lessons

  13. Lessons • Certificates are needed to establish a web of trust in a distributed environment. • A trusted individual can “vouch for” another party by certifying the binding of identity to public key. • A third party can check the validity of the binding 13 Coming up: Certificates and Trust

  14. Certificates and Trust Certificates address the need for constructing a web of trust in computer systems: How do mutually suspicious entities establish a relationship of trust? One way is to rely on a known third party to “vouch for” one or both of the parties. In a digital context, this typically means certifying the binding between identity and public key. 14 Coming up: Chains of Trust

  15. Chains of Trust Suppose Y has a certificate signed by X, but Y now needs to certify W . He might produce a certificate for W and append X’s certificate to it. This creates a chain of trust from W to Y to X. Ideally, the chain is rooted at some unimpeachable authority. 15 Coming up: Certification Authorities

  16. Certification Authorities An entity may gain authority to certify by virtue of position, rather than familiarity. In off-line transactions this might be a notary public, personnel officer, security officer in a company, etc. On the Internet, several groups serve as “root certification authorities”: Verisign, SecureNet, Baltimore Technologies, Deutsche Telecom, Certiposte, and several others. 16 Coming up: X.509 Certificates

  17. X.509 Certificates X.509 is a widely followed standard for digital certificates. An X.509v3 certificate has the following components: • Version: version of X.509 used; • Serial number: unique among certificates issued by this issuer; • Signature algorithm identifier: identifies the algorithm and paramsused to sign the certificate; • Issuer’s distinguished name: with serial number, makes all certificates unique; • Validity interval: start and end times for validity; • Subject’s distinguished name: identifies the party being “vouched for”; • Subject’s public key info: identifies algorithm, params, and public key; 17 Coming up: X.509 Certificates (Cont.)

  18. X.509 Certificates (Cont.) • Issuer’s unique id: used if an Issuer’s distinguished name is ever reused; • Subject’s unique id: same as field 8, but for the subject; • Extensions: version specific information; • Signature: identifies the algorithm and params, and the signature (encrypted hash of fields 1 to 10). To validate the certificate, the user: • obtains the issuer’s public key for the algorithm (3); • verifies the signature (11); • recomputethe hash and compare with the received value; • check the validity interval. • Try it: openssls_client -showcerts -connect www.suntrust.com:443 18 Coming up: Lessons

  19. Lessons • Certificates can be combined to produce a chain of trust. • To be useful the chain must be rooted in a trusted authority. • X.509 is a widely followed international standard for certificates. 19 End of presentation

More Related