290 likes | 422 Views
ANGULAR DIFFERENCE PROTECTION SCHEME USING PMUS. ENRIQUE MARTINEZ MARTINEZ COMISION FEDERAL DE ELECTRICIDAD MEXICO. ACTUAL TRENDS IN DEVELOPMENT OF POWER SYSTEM PROTECTION AND AUTOMATION 7-10 SEPTEMBER 2009, MOSCOW. INTRODUCTION. GENERATION-LOAD BALANCE
E N D
ANGULAR DIFFERENCE PROTECTION SCHEME USING PMUS ENRIQUE MARTINEZ MARTINEZ COMISION FEDERAL DE ELECTRICIDAD MEXICO ACTUAL TRENDS IN DEVELOPMENT OF POWER SYSTEM PROTECTION AND AUTOMATION 7-10 SEPTEMBER 2009, MOSCOW
INTRODUCTION • GENERATION-LOAD BALANCE • TRADITIONAL SPECIAL PROTECTION SCHEMES • UNDERFREQUENCY LOAD SHEDDING • UNDERVOLTAGE LOAD SHEDDING • GENERATOR SHEDDING • THE QUESTION IS … • SYSTEM SEGREGATION • MAINTAIN SYSTEM INTEGRITY
CFE SYNCHROPHASOR MEASUREMENT SYSTEM • CFE PMU INSTALLATIONS • INTERCONNECTED NATIONAL SYSTEM • NORTH BAJA CALIFORNIA SYSTEM • SOUTH BAJA CALIFORNIA SYSTEM • PMUS APPLICATION LEVELS • INTERCONNECTED NATIONAL SYSTEM • AREAS • AREA INTERCONNECTIONS SPS • MAIN SUBSTATIONS AND POWER PLANTS
PMUs APPLICATION LEVELS IN CFE SYSTEM F, V, P, Q and Angle F, V, Angle, P&Q AREA F, V, Angle, P-V Curve, Imp. Loci R-X, AGSS INTER AREA LINKS F, V, Angle,P-V, P-F, Q-V, R-X, AGSS • SUBSTATION • POWER PLANT
VDG U.S.A. U.S.A. (MIGUEL) (IMPERIAL V.) PMU´S AND AGSS´S LOCATION NZI CTY OZA RIN CRO RUM TEK TJI (U.S.A.) (U.S.A.) STB ROA APD AZCARATE. PAP DIABLO WIS RZC NEP HGO MXI PJZ CHQ CSC CPU CPD CPT SSA VJZ CNN CIP REA ICA STA SCN SYC NRI SVE TRI HLT NGC KON PLD LCF MCZ SAF LCD (U.S.A.) C.P.L HLC AMI CDY SQN HLI CUN AUA CHD SMN PNE PGD COT FVL AVL REC NAV HCP CBD COC ENO NUR PNO CGD HTS CID MON NUL LAM OJC FRO LMD ADC LRO CPR SGD PES TPO NIC REY FAM AER GMD AND RIB APC GPL ESC MTM RAP INS MTY DOM CCL CUT LED PZA INV SCP HUI VIO TRS PEL DGD LOU CED TEC LVI PUP GAO PMY LAJ BLE CAL DGS CHR LPZ GUE MZD VGR EPS SNT EAA SLD ETR ZCD HBL SJC SLP ATC AGS TDS CDA LPI CPY PAE AGM ALT VDR SPA CAB CAD AGT APT ANP TPC LNT PJU CEK TED MIA ZPP LNC TSN TMO NTE BNP LNU TZM CNC GDO GUN DAÑ QRO KOP TUV SAU SIP VTP HAA ZMN GUD QRP PRI PTE NIZ APR ATQ IRA VDD NCM MDA PKP GDU IZL HBK ABA HRC MDP TTE CNI PRD PCN SLM KNP ATN SUR VAD OCN CYA MZT ELC MAX TIU TIC MRP MAN CEL LRA LAV CGM SAM JAL KBL MTA ZOC CRP CMO KAL UPT PBD DOG ZAP PYU TAM CMD CPT DBC SBY OJP ATE VRD MND TAP XUL CNR INS ESA CBN MZL ATD APZ CRE MAM SLC COL JDN INF MCD LRP LRS FTM ALD VHN TCL CDD CTE CRL CTS VIL TMD MID PEA SID TOM KLV QMD NKS LCP LAT MPS JUI MMT OXP SSB JUD ANG PMU´S AND PMCU´S TPH EMM/Jun-2009
PHASOR MEASUREMENT AND CONTROL UNIT (PMCU) STAGES OF THE PROJECT PHASOR MEASUREMENT UNIT (PMUS) WIDE AREA MEASUREMENT (WAMS) + PLC WIDE AREA CONTROL & PROTECTION SYSTEM (WAC&PS)
XL/3 XL α1 AUTOMATIC GENERATION SHEDDING SCHEME (AGSS) APPLICATION PRINCIPLE XL/2 SYSTEM A α SYSTEM B α2 α3 ∂ang=α─α1 ∂ang=α─α2 ∂ang=α─α3
CHICOASEN-ANGOSTURA AGSS MUX MUX FIBER OPTIC EIA-232 EIA-232 POWER FLOW 150 MW V1 F1 P1, Q1 P2, Q2 α • AGSS CONDITIONS • VOLTAGE • FREQUENCY • 10≤ ΣP 800 • 52 • ANG = A─B V2 F2 P1, Q1 P3, Q3 α1 ΣP=P1+P2 ΣP=P1+P2 ≤
180 160 140 120 100 DEGREES 80 60 40 20 0 – 20 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 SECONDS ANGLE DIFFERENCE CALCULATION FOR DOUBLE CONTINGENCY WITHOUT AGSS OPERATION
30 25 20 15 10 EGREES 5 D 0 – 5 – 10 – 15 – 20 0 1 2 3 4 5 6 SECONDS ANGLE DIFFERENCE CALCULATION FOR DOUBLE CONTINGENCY WITH AGSS OPERATION
ANGLE DIFFERENCE MEASUREMENTS BETWEEN CHICOASEN AND ANGOSTURA
ANGLE DIFFERENCE CALCULATIONS AND MEASUREMENTS OF THREE DIFFERENT LINE TRIPS
VOLTAGE MAGNITUDE MEASUREMENTS AT CHICOASEN AND ANGOSTURA (A3030) CIRCUIT TRIP MMT-A3030-ANG CIRCUIT CLOSE MMT-A3030-ANG
VOLTAGE MAGNITUDE MEASUREMENTS AT CHICOASEN AND ANGOSTURA (A3130) CIRCUIT TRIP MMT-A3130-SSB CIRCUIT CLOSE MMT-A3130-SSB
VOLTAGE MAGNITUDE MEASUREMENTS AT CHICOASEN AND ANGOSTURA (A3T60) CIRCUIT CLOSE ANG-A3T60-SSB CIRCUIT TRIP ANG-A3T60-SSB
60.3 60.25 60.2 60.15 HZ 60.1 60.05 60.0 59.95 ANG MMT 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 AGSS FREQUENCY MEASUREMENT DURING EXTERNAL FAULT CONDITIONS SAMPLES (20 SAMPLES/SECOND)
415 414 413 412 411 410 409 408 KV 407 406 405 404 403 402 401 ANG MMT 400 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 AGSS VOLTAGE MAGNITUDE MEASUREMENT DURING EXTERNAL FAULT CONDITIONS SAMPLES (20 SAMPLES/SECOND)
3 2.5 2 1.5 DEGREES 1 0.5 0 AGSS ANGLE DIFFERENCE MEASUREMENT DURING EXTERNAL FAULT CONDITIONS 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 SAMPLES (20 SAMPLES/SECOND)
AGSS DURING INTERNAL FAULT CONDITIONS 15:16:39:100 SINGLE PHASE TRIP AND OPEN POLE PERIOD INITIATE 15:16:39:800 SINGLE PHASE RECLOSE WITH PERMANENT FAULT 15:16:39:900 THREE PHASE TRIP LINE ANG - MMT OPEN MMT ANG SSB
AGSS VOLTAGE MAGNITUDE MEASUREMENT DURING INTERNAL FAULT CONDITIONS
AGSS ANGLE DIFFERENCE MEASUREMENT DURING INTERNAL FAULT CONDITIONS
CONCLUSIONS • PMCUS WILL REDUCE OPERATING TIME AND IMPROVE RELIABILITY IF COMPARED WITH AGSS´S BASED ON TRADITIONAL MEASUREMENT AND PLCS FUNCTIONS • SYNCHRONIZED ANGLE-DIFFERENCE MEASUREMENTS PROVIDE RELIABLE INFORMATION TO DETECT NETWORK TOPOLOGY CHANGES WITH MINIMUM COMMUNICATION REQUIREMENTS
CONCLUSIONS • FAST COMMUNICATIONS CHANNELS AND AVAILABLE PMCUS ALLOW THE ANGLE-DIFFERENCE-BASED AGSS TO OPERATE IN LESS THAN 200 MS. • SYNCHRONIZED MEASUREMENT MESSAGE RATE AFFECTS THE AGSS OPERATING TIME. MESSAGE RATES OF 10 OR 20 MESSAGES PER SECOND IS STILL VERY GOOD TO AVOID TRANSIENT STABILITY PROBLEMS IN THE REGION.
CONCLUSIONS • RECORDS OF ANGLE DIFFERENCE MEASUREMENTS FOR SINGLE LINE CONTINGENCIES VALIDATE MEASUREMENTS AND SIMULATION MODELS. AGSS MUST OPERATE ONLY WHEN TWO PARALLEL LINES ARE LOST IN SIMULTANEOUS OR SEQUENTIAL FORM