1 / 34

繰り込み不可能な超対称 SU(5) 模型における 繰り込み群方程式による フレーバーの破れ

繰り込み不可能な超対称 SU(5) 模型における 繰り込み群方程式による フレーバーの破れ. 山下 敏史   ( 名古屋大学 ). 2009年11月27  @ICRR. based on arXiv:0903.2793[hep-ph] with F. Borzumati (台湾国立大学). Yukawa. LFV. Introduction & Conclusion. LFV vs. QFV in SUSY-GUTs. RGE. Seesaw mechanism. F. Borzumati & A. Masiero (1986).

Download Presentation

繰り込み不可能な超対称 SU(5) 模型における 繰り込み群方程式による フレーバーの破れ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 繰り込み不可能な超対称SU(5)模型における繰り込み群方程式によるフレーバーの破れ繰り込み不可能な超対称SU(5)模型における繰り込み群方程式によるフレーバーの破れ 山下 敏史  (名古屋大学) 2009年11月27  @ICRR based on arXiv:0903.2793[hep-ph] with F. Borzumati (台湾国立大学)

  2. Yukawa LFV Introduction & Conclusion • LFV vs. QFV in SUSY-GUTs RGE Seesaw mechanism F. Borzumati & A. Masiero (1986)

  3. Yukawa LFV QFV RGE Introduction & Conclusion • LFV vs. QFV in SUSY-GUTs RGE Seesaw mechanism affected? Baek, Goto, Okada & Okumura (2001) Moroi (2000) Grand Unification realistic?? Fermion Spectra Proton Decay New Physics above GUT

  4. Wrong GUT relation: NRO can suppress only Yukawa of . Introduction & Conclusion • Fermion Spectrum affects only 1st & 2nd generations Non-Renormalizable Operators GUT breaking effects • Proton Decay is allowed. D.E. Costa & S. Wiesenfelds (2003)

  5. Yukawa LFV QFV Introduction & Conclusion • LFV vs. QFV in SUSY-GUTs RGE Seesaw mechanism affected? RGE Grand Unification Fermion Spectra Proton Decay NROs New Physics above GUT

  6. RGE Introduction & Conclusion • How to deal? infinite divergences NRO infinite new operators • Approximation Higher-dim terms : higher suppression by and/or We can neglect the higher terms! S. Baek, T. Goto, Y. Okada & K. Okumura (2001) An O(s^2) analysis was done.

  7. MSSM + Introduction & Conclusion • Setup MSSM + … SU(5) w/ NROs • references S. Baek, T. Goto, Y. Okada & K. Okumura (2001) N. Arkani-Hamed, H. C. Cheng & L. J. Hall (1996) J. Hisano, D. Nomura, Y. Okada, Y. Shimizu & M. Tanaka (1998) Bolzumati & T.Y. (2009) generalized study with a dim.5 NRO. RGE w/ effective couplings.

  8. superCKM basis Introduction & Conclusion • conclusion : not affected leading effect : approximation : P.Ko, J.h.Park & M.Yamaguchi (2008) S. Baek et.al. (2001)

  9. Plan • Introduction & Conclusion • RGEs in renormalizable models • RGEs in non-renormalizable models • Effective couplings • Universality of B.C. • Summary

  10. RGEs in renormalizable models • general setup field redefinition

  11. RGEs in renormalizable models • Feynman rule : propagator field redefinition

  12. RGEs in renormalizable models • Feynman diagram

  13. RGEs in renormalizable models • corrections field redefinition superpotential terms :

  14. Plan • Introduction & Conclusion • RGEs in renormalizable models • RGEs in non-renormalizable models • Effective couplings • Universality of B.C. • Summary

  15. RGEs in NR models • general setup field redefinition

  16. RGEs in NR models • Feynman diagram

  17. RGEs in NR models • Approximation neglect O(s^3) contributions one-step approximation : S. Baek, T. Goto, Y. Okada & K. Okumura (2001)

  18. Plan • Introduction & Conclusion • RGEs in renormalizable models • RGEs in non-renormalizable models • Effective couplings • Universality of B.C. • Summary

  19. Effective couplings • definition • SU(5) example forgotten in some literatures used in the matching to MSSM. These can be used also at loop level!

  20. Effective couplings • Feynman diagram <24H> <X> Anom. dim.s are given as in renormalizable model, by using the effective couplings.

  21. Effective couplings • loop corrections ignored in the literatures ??? Note also the running of the VEV. Bolzumati & T.Y. (2009) These holds in general.

  22. H Effective couplings • flows of VEVs Field redefinition: if no vertex corrections : independent of the Kahler Potential def. of VEVs:

  23. Vacuum structure • general setup depends on Kahler? independent of Kahler EOM :

  24. Effective couplings • loop corrections ignored in the literatures Note also the running of the VEV. Bolzumati & T.Y. (2009) These holds in general.

  25. Effective couplings • used approximation does not cancel 1/Mcut O(E/Mcut )? • remark Colored Higgs Yukawa has peculiar contributions, of O(s^2), affecting FVs at O(s^3), via add. loop.

  26. Plan • Introduction & Conclusion • RGEs in renormalizable models • RGEs in non-renormalizable models • Effective couplings • Universality of B.C. • Summary

  27. Universality of B.C. • in MSSM The universal B.C. is often used, at a high scale. • in non-renormalizable models How should it be generalized? field-independence “weak” universality for each dimensionality?

  28. This does not ensure . Universality of B.C. • weak universality • This is not stable under the field redefinition to minimize the Kahler potential :

  29. Universality of B.C. • weak universality

  30. Universality of B.C. • strong universality

  31. This does ensure ! Universality of B.C. • strong universality in superpotential

  32. Universality of B.C. • strong universality in Kahler potential impose this minimized by the field redefinition w/

  33. The SUSY should couple to the overall potentials. Universality of B.C. minimal SUGRA • strong universality in Kahler potential # parameters : 3 (apart from the gaugino mass )

  34. Summary • We discuss RGEs in NR models are. • O(s^2) contributions can be controlled. • We propose (formulate) another treatment via effective couplingis • We see how universality is generalized. S. Baek, T. Goto, Y. Okada & K. Okumura (2001) Cf. N. Arkani-Hamed et.al. (1996), J. Hisano et.al. (1998) • In paper F. Borzumati & T. Y. (2009) Non-universal B.C. are also investigated. Some discussion on Proton decay is given. All the relevant RGEs are given for type I, II, III.

More Related