160 likes | 173 Views
This article explains recursive functions in C programming with examples of famous recursively defined functions such as factorial and fibonacci. It also includes C implementations of iterative and recursive versions of the factorial function. The article discusses the concept of recursion, recursive algorithms, and provides examples of recursive functions to perform multiplication and count characters in a string. It concludes with an example of a program in C to count pixels belonging to an object in a photograph using recursive function calls.
E N D
Recursion H&K Chapter 10 Instructor – GokcenCilingir Cpt S 121 (July 21, 2011) Washington State University
Recursive functions • A function that calls itself is said to be recursive. Here are examples of “famous” recursively defined functions in math: factorial and fibonacci Base case/step Recursive case/step • The ability to invoke itself enables a recursive function to be repeated with different parameter values
C implementation to factorial function //iterative implementation int fact (int n) { int i, ans = 1; for(i = n; i > 1; i--) ans = ans * i; return ans; } //recursive implementation int fact (int n) { int ans; if (n == 0) ans = 1; else ans = n * fact(n-1); return ans; }
Recursion • Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem. • A common computer programming tactic is to divide a problem into sub-problems of the same type as the original, solve those problems, and combine the results. fact fact(n-1) … fact(0) n fact(n) multiply all
Recursion (2) • Problems that may be solved using recursion have these attributes: • One or more simple cases have a straightforward, non-recursive solution • The other cases may be defined in terms of problems that are closer to the simple cases • Through a series of calls to the recursive function, the problem eventually is stated in terms of the simple cases image source: H&K, figure 10.1
Recursion (3) • The recursive algorithms we’re going to write will generally have the form: if this is a simple (base) case: solve it else redefine the problem using recursion
Example 1 • Write a function that performs multiplication through addition with the prototype: int multiply(int m, int n); • Let’s recursively define multiply: base case: multiply(m,1) is m recursive case: multiply(m, n) is n + multiply(m, n-1)
Example 1 (cont’d) Here is the recursive C implementation of mult: int multiply (int m, int n) { int ans; if (n == 1) ans= m; // base case else ans= n + multiply (m, n – 1); // recursive case return ans; }
Example 2 • Write a function to count the number of times a particular character appears in a string. Here is the function prototype: int count (char ch, const char str[]); • Let’s recursively define count: base case: If str has 0 length, then count(ch,str) is 0 recursive case: if str[0] is ch, then count(ch,str) is 1+ count(ch, &str[1]) else, count(ch,str) is count(ch, &str[1])
Example 2 (cont’d) • Figure below illustrates a common thinking strategy while designing a recursive solution to a problem: image source: H&K, figure 10.3
Example 2 (cont’d) Here is the recursive C implementation of mult: int count (char ch, const char str[]) { int ans; if (strlen(str) == 0) //base case ans = 0; else //recursive case { if (ch == str[0]) ans = 1 + count(ch, &str[1]); else ans = count(ch, &str[1]); } return ans; }
Tracing a recursive function image source: H&K, figure 10.5
Example 3 • Develop a program in C to count pixels(picture elements) belonging to an object in a photograph. The data are in a two-dimensional grid of cells, each of which may be empty (value 0) or filled (value 1). The filled cells that are connected form a blob (an object). • Write a function blob_check that takes as parameters the grid and x-y coordinates of a cell and returns as its value the number of cells in the blob to which the indicated cell belongs. image source: H&K, figure 10.27
Example 3 (cont’d) • Prototype of blob_check : int blob_check(int grid[][SIZE], int x, int y); • Let’s recursively define blob_check: Base case If the cell (x,y) is not on the grid, or the cell (x,y) is empty, then blob_check returns 0. Recursive case If the cell is on the grid and filled, then blob_check returns: 1 + blob_check (grid, x+1, y) + blob_check (grid, x-1, y) + blob_check (grid, x, y+1) + blob_check (grid, x, y-1) + blob_check (grid, x+1, y-1) + blob_check (grid, x+1, y+1) + blob_check (grid, x-1, y-1) + blob_check (grid, x-1, y+1) • NOTE: To avoid counting a filled cell more than once, mark a cell as empty once you have counted it
Example 3 (cont’d) int blob_check(int grid[][SIZE], int x, int y) { int ans, i, j, newX, newY; int adjustment[3] = {-1, 0, 1}; if (x < 0 || x > SIZE || y < 0 || y > SIZE || grid[x][y] == 0) ans = 0; else { ans = 1; grid[x][y] = 0; /*mark it as zero not to count it twice later*/ for(i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { newX = x + adjustment[i]; newY = y + adjustment[j]; ans = ans + blob_check(grid,newX,newY); } } } return ans; }
References • J.R. Hanly & E.B. Koffman, Problem Solving and Program Design in C (6th Ed.), Addison-Wesley, 2010 • P.J. Deitel & H.M. Deitel, C How to Program (5th Ed.), Pearson Education , Inc., 2007.