320 likes | 342 Views
Dark Matter in the Universe physics beyond the standard model. why not neutrinos how to detect Dark Matter particles. Josef Jochum Eberhard Karls Universität Tübingen Kepler Center for Astro and Particle Physics. many astrophysical observations point to Dark Matter ?.
E N D
Dark Matter in the Universe physics beyond the standard model why not neutrinos how to detect Dark Matter particles Josef Jochum Eberhard Karls Universität Tübingen Kepler Center forAstroandParticlePhysics
many astrophysical observations point to Dark Matter ? orbital motionaroundGalaxies ormotionofgalaxies in galaxyclusters too fast • gravity potential anddistribution • ofvisible matter do not coincide • light deflectionshows • highergravitypotentials • thanexpectedfromvisible matter http://inspirehep.net/record/1082173/files/bullet1.png
Anisotropy of Comsic Microwave Background 2009 2001 Wilkinson Microwave Anisotropy Probe
CosmicMicrowave Background CMB Universe not transparent Universe transparent Foto: Franko Fürstenhoff http://www.fotocommunity.de/pc/pc/display/19133095
CMB measurement • perfectblackbody T = 2.73K • tinyanisotropy ~ dT / T ~ 10-5 • showsdensityvariation • at (re)-combination • p + e- H + g • CMB: • t = 380.000 years • z = 1100 ; T ~ 3000K; kT ~ 0,3 eV • Universe was 1100 timessmaller • scalefactor: R = 1 today, R = 1 / 1100 at (re)-combination
Power Spectrum compressionand decompressionpeaks showstheoscillationmodeswhichare at maximumcompressionor maximumexpansion at the time of (re)combination
Structure Formation in the Universe densityr; pressure p, speed v, gravity potential F continuityeq. Euler eq. Poissoneq. densitycontrast variation = averagedensity
Structure Formation in the Universe densityr; pressure p, speed v, gravity potential F continuityeq. nostructuregrowth aslongasparticles arerelativistickT > mc2 Euler eq. • oncedensitycontrastd grows, • itgrows like thescalefactor • d ~ R ~ 1/T • dx 1100 • since (re)combination • today 2,7K – recomb ~ 3000 K Poissoneq. densitycontrast variation = averagedensity
Structure Formation in the Universe densityr; pressure p, speed v, gravity potential F continuityeq. linearisation: r0etc. homogeneous r1(x,t) etc. smalldisturbation Euler eq. densitycontrast Poissoneq.
Structure Formation in the Universe densityr; pressure p, speed v, gravity potential F “waveeq“ withgravity soundspeed
Structure Formation in the Universe densityr; pressure p, speed v, gravity potential F “waveeq“ withgravity pressureterm soundspeed
Structure Formation in the Universe densityr; pressure p, speed v, gravity potential F “waveeq“ withgravity • densitiyonlyoscillates • nostructuregrowth • aslongaspressuretermis large >
Structure Formation in the Universe pressuretermneedstobesmallordisappearing structuregrowth (growthofd) only at scales larger than Jeans lengthlJ <
Structure Formation in the Universe structuregrowth (growthofd) onlyif => expansionof theUniverse for relativistic matter or matter coupledtoradiation (ionized, plasma) Vs ~ C
Structure Formation in the Universe structuregrowth (growthofd) onlyif => expansionof theUniverse for relativistic matter or matter coupledtoradiation (ionized, plasma) Vs ~ C nostructure growth at all horizon ct t
Structure Formation in the Universe structuregrowth (growthofd) onlyif => expansionof theUniverse nostructure growth at all horizon ct Universecools down whenkT< mc2 or gas gets neutral onlythen structuregrowth canstart whenpressureterm disappears t
Structure Formation in the Universe • nostructuregrowth • before (re)-combination p + e- => H + g (comsicmicrowavebackground) • aslongasparticlesarerelativistickT > mc2 d pressure vanishes t (re) combination , CMB
Structure Formation in the Universe in a matter dominatedUniverse plug in R ~ t 2/3 • Ansatz d ~ t n • d ~ t 2/3 takingintoaccounttheexpansionoftheUniverse • densitycontrastgrows • like thescalefactor • d ~ R • dx 1100 • since (re)combination R: scalefactor ifdefined =1 today, was 1/1000 at (re)combination)
observedanisotropyof 10-5byfartoosmall 10-5 x 1100 10-2 ??? was there a 100 x larger anisotropywecannotsee in the CMB ? • ifyes, thenmade out of • particleswithoutelectromagneticinteraction • otherewisewewouldseeit in CMB • Dark Matter
Neutrinos • thereare 336 neutrinos / cm-3 leftfrom Big Bang • couldbe a considerablecontributionto Dark Matter 100% of dark matter if ~ 10 eV
Structure Formation in the Universe d Dark Matter Baryons (p,n,e-, H, He) theonly non electromagneticparticles in thestandardmodelare Neutrinos t (re) combination , CMB BUT: Neutrinos still relativistic at (re)combination ( kT ~ 0,3 eV ) cannot form structure toobig • dark matter is not made out of (light) neutrinos / hotdark matter • weneedcolddark matter or at least warm dark matter (> ~ keVmass)
Neutrinos • thereare 336 neutrinos / cm-3 leftfrom Big Bang • couldbe a considerablecontributionto Dark Matter 100% of dark matter if ~ 10 eV • but: theyaretoo light • look at structure in theUniversetogetlimits on
Structure Formation in the Universe • therelicneutrinodensityisgiven • asheavierthe light neutrinosare • as larger theircontribution • tohotdark matter • smallscalestructuresaresupressed toobig
Wn • mni Neutrinos limits on
Structure Formation in the Universe d Dark Matter Baryons (p,n,e-, H, He) t (re) combination , CMB canweseethisdark matter ? yes
compression peaks stronger expansion peaks weaker chargedparticles (p, e-) oscillate in a background non-oscillatinggravityfield madefrom neutral particles, whichstartedstructureformationmuchearlier
compression peaks stronger expansion peaks weaker chargedparticles (p, e-) oscillate in a background non-oscillatinggravityfield madefrom neutral particles, whichstartedstructureformationmuchearlier
weaklyinteracting • heavy ( > ~ keV) • manyideas : • sterile keVneutrinos • Axions • Supersymmetry • …. • 100 GeV - ~ 1000 GeV • massrangeis “quitenatural“ • acceleratorbounds • thermodynamicsduringbig bang • Supersymmetry • or ~ 5GeV • ifitshares matter-antimatter asymmetry • ( mc ~ WDM / Wp,n ) ? u p ? d ? e- ne ? WIMP weakly interacting massive particle new particles beyond the standard model
Direct Dark Matter Search – (near) future CRESST 1t scale liquid Xenon detectors running XENON 1t LZ coming Cryogenics: EDELWEISS and CRESST continue running SuperCDMS funded worldwide cooperation SuperCDMS XENON 1T • sensitivity at low and high WIMP masses will improve • in case of discovery: good possibilities for multitarget confirmation • might turn into neutrino detection
LHC DM Searches remarkable progress x 1000 improvement in sensitivity in 10 yrs present best sensitivities (for spin independent WIMP scattering) • cryogenic • liquid Xenon + other techniques (doing better for spin dependent WIMP scattering) we have different techniques with promising sensitivity simultaneously LHC is running and will march upward in mass spin independent interaction spin dependent interaction
Dark Matter and Neutrinos Dark Matter • thereare 336 neutrinos / cm-3 leftfrom Big Bang • couldbe a considerablecontributionto Dark Matter • CMB anisotropyobservationsandstructureformation • show Dark Matter is • non-electromagnetic • non-relativisticlongbefore (re)combiantion • mass >~ keV • studyof large scalestructureallowstosetlimits on • directsearch 0.1 GeVto ~ 1000 GeV d Baryons (p,n,e-, H, He) t (re) combination , CMB