240 likes | 371 Views
CSCE 3110 Data Structures & Algorithm Analysis. More on lists. Circular lists. Doubly linked lists. Applications of Linked Lists. Stacks and Queues Implemented with Linked Lists Polynomials Implemented with Linked Lists Remember the array based implementation?
E N D
CSCE 3110Data Structures & Algorithm Analysis More on lists. Circular lists. Doubly linked lists.
Applications of Linked Lists • Stacks and Queues Implemented with Linked Lists • Polynomials Implemented with Linked Lists • Remember the array based implementation? • Hint: two strategies, one efficient in terms of space, one in terms of running time
Operations on Linked Lists • Running time? • insert, remove • traverse, swap • How to reverse the elements of a list?
coef expon link Polynomials Representation typedef struct poly_node *poly_pointer; typedef struct poly_node { int coef; int expon; poly_pointer next; }; poly_pointer a, b, c;
Example a null 1 0 3 14 2 8 b null 8 14 -3 10 10 6
Adding Polynomials 2 8 1 0 3 14 a -3 10 10 6 8 14 b 11 14 a->expon == b->expon d 2 8 1 0 3 14 a -3 10 10 6 8 14 b a->expon < b->expon -3 10 11 14 d
Adding Polynomials (cont’d) 2 8 1 0 3 14 a -3 10 10 6 8 14 b -3 10 11 14 2 8 d a->expon > b->expon
Adding Polynomials (cont’d) poly_pointer padd(poly_pointer a, poly_pointer b) { poly_pointer front, rear, temp; int sum; rear =(poly_pointer)malloc(sizeof(poly_node)); if (IS_FULL(rear)) { fprintf(stderr, “The memory is full\n”); exit(1); } front = rear; while (a && b) { switch (COMPARE(a->expon, b->expon)) {
case -1: /* a->expon < b->expon */ attach(b->coef, b->expon, &rear); b= b->next; break; case 0: /* a->expon == b->expon */ sum = a->coef + b->coef; if (sum) attach(sum,a->expon,&rear); a = a->next; b = b->link; break; case 1: /* a->expon > b->expon */ attach(a->coef, a->expon, &rear); a = a->next; } } for (; a; a = a->next) attach(a->coef, a->expon, &rear); for (; b; b=b->next) attach(b->coef, b->expon, &rear); rear->next = NULL; temp = front; front = front->next; free(temp); return front; }
Analysis (1) coefficient additions 0 additions min(m, n) where m (n) denotes the number of terms in A (B). (2) exponent comparisons extreme case em-1 > fm-1 > em-2 > fm-2 > … > e0 > f0 m+n-1 comparisons (3) creation of new nodes extreme case m + n new nodes summary O(m+n)
Other types of lists: • Circular lists • Doubly linked lists
Circularly linked lists circular ptr 2 8 1 0 3 14
X3 X2 X2 X1 X1 Operations in a circular list What happens when we insert a node to the front of a circular linked list? a Problem: move down the whole list. A possible solution: X3 a Keep a pointer points to the last node.
X2 X1 Insertion void insertFront (pnode* ptr, pnode node) { /* insert a node in the list with head (*ptr)->next */ if (IS_EMPTY(*ptr)) { *ptr= node; node->next = node; /* circular link */ } else { node->next = (*ptr)->next; (1) (*ptr)->next = node; (2) } } X3 ptr (2) (1)
List length int length(pnode ptr) { pnode temp; int count = 0; if (ptr) { temp = ptr; do { count++; temp = temp->next; } while (temp!=ptr); } return count; }
Doubly Linked List • Keep a pointer to the next and the previous element in the list typedef struct node *pnode;typedef struct node { char data [4]; pnode next; pnode prev; }
Doubly Linked List • Keep a header and trailer pointers (sentinels) with no content • header.prev = null; header.next = first element • trailer.next = null; trailer.prev = last element • Update pointers for every operation performed on the list • How to remove an element from the tail of the list ?
Doubly Linked List – removeLast() • Running time? • How does this compare to simply linked lists?
Doubly Linked List • insertFirst • swapElements
Revisit Sparse Matrices Previous scheme: represent each non-NULL element as a tuple (row, column, value) New scheme: each column (row): a circular linked list with a head node
Nodes in the Sparse Matrix col down right row entry node value i j aij aij
Linked Representation 4 4 0 2 11 1 1 1 0 12 5 1 2 -4 3 3 -15 Circular linked list
#define MAX_SIZE 50 /* size of largest matrix */typedef struct mnode *pmnode;typedef struct mnode { int row; int col; int value; pmnode next, down; }; Sparse Matrix Implementation
Operations on Sparse Matrices • Transpose • Addition • Multiplication