1 / 25

课例 17 勾股定理

课例 17 勾股定理. A. 如果直角三角形的两直角边长分别为 a , b ,斜边长为 c , 那么 a 2 + b 2 = c 2. c. b. C. B. a. “ 弦图” ∵ c 2 - 4× ab = ( a - b ) 2 , ∴ c 2 = a 2 + b 2. a - b. b. a. c. _. 1. 2. c. c. a. b. b. a. b. a. c. c. a. b. c. a. b. c. a. b. c. a. b. c.

jun
Download Presentation

课例 17 勾股定理

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 课例17 勾股定理

  2. A 如果直角三角形的两直角边长分别为a,b,斜边长为c, 那么 a2 + b2= c2 . c b C B a

  3. “弦图” ∵ c2-4× ab=(a-b)2 , ∴ c2=a2 + b2 . a-b b a c _ 1 2

  4. c c a b b a

  5. b a c c a b

  6. c a b c a b

  7. c a b c a b

  8. c a c b b a

  9. 2002 年世界数学家大会会标

  10. a2 b2

  11.  a2 + b2 = c2 c2

  12. 1955年希腊发行的一枚纪念邮票

  13. a-b b a c

  14. b a b a c a a a a c a b b c c b b b c b c a a a b b

  15. _ _ 1 1 2 2 1876 年美国总统加菲尔德的证法 c b c a a b (a+b) (a+b)= c2+2× ab

  16. L G F H A S△ABD = S矩形BDLM, S△FBC = S正方形FBAG, ∵S△ABD = S△FBC, ∴S矩形BDLM = S正方形FBAG. 同理, S矩形CELM = S正方形 ACKH. ∴ S正方形 ABFG + S正方形 ACKH = S正方形 BDEC . K B C D E

  17. D D x y C B a b C A C a b B A y x c D △ ACD∽△ABC △ CBD∽△ABC => => => b2 = cx ①a2 = cy② ①+②得 a2+b2=c(x+y)=c2 , =>  a2 + b2 = c2.

  18. B E D A C 在Rt△ABC 中 ,∠C = 90°. 以 B 为圆心 BC 为半径作圆 AB交⊙B于点D,延长AB交⊙B于点E . 根据切割线定理,AC2 = AD · AE . ∴ AC2=AD(AB+BC)=(AB– BC)(AB+BC) = AB2– BC2. ∴AC2 + BC2 = AB2.

  19. 如图,一根旗杆在离地面 9 m 处断裂,旗杆顶部落在离旗杆底部 12 m 处,旗杆折断之前有多高?

More Related