1 / 37

Ultracold Quantum Gases: An Experimental Review

Ultracold Quantum Gases: An Experimental Review. Herwig Ott University of Kaiserslautern OPTIMAS Research Center. Outline. Laser cooling , magnetic trapping and BEC Optical dipole traps, fermions Optical lattices : Superfluid to Mott insulator transition

june
Download Presentation

Ultracold Quantum Gases: An Experimental Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ultracold Quantum Gases:An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center

  2. Outline • Laser cooling, magnetictrappingand BEC • Optical dipole traps, fermions • Optical lattices:Superfluid to Mott insulatortransition • Magneticmicrotraps: Atom chipsand 1D physics

  3. Outline • Feshbachresonances: tamingtheinteraction • The BEC-BCS transition • Single atomdetection

  4. Lab impressionsfrom all overtheworld Munich Tübingen Osaka Austin

  5. Magneto-optical trap (MOT) MOT: 3s, 1 x 109 atoms

  6. MOT: Limits andextensions Temperature: 50 – 150 µK foralkalis Atom number: 1 … 109 Hugeloading rate (Zeeman slower, 2D-MOT) Single atom MOT (strong quadrupolefield) Narrow transitions: below 1µK (e.g. Strontium)

  7. The beauty of magneto-optical traps sodium strontium lithium ytterbium dysprosium erbium

  8. Magnetictrapping Working principle:Magneticfieldminimumprovidestrapping potential Evaporativecoolingwithradiofrequencyinducedspinflips Technical issues: heatproduction in thecoils, control of fieldminimum Pros: robust, large atomnumber Cons: longcoolingcycle (20 s – 60 s), limited opticalaccess

  9. Magnetic traps for neutral atoms Ioffe- Pritchardtrap Cloverleaftrap 4 cm

  10. Imaging an ultracoldquantum gas „Time offlight“ technique Credits: Immanuel Bloch

  11. coherent matter wave „Standard“ Bose-Einstein condensation classical gas Tc ~ 1µK Bose-Einstein condensation

  12. The first BEC 1995: Cornell andWieman, Boulder

  13. The earlyphase: 1995 - 1999 expansion: condensatefraction Duke speed of sound Boulder MIT

  14. The earlyphase: 1995 - 1999 Interferencebetweentwocondensates (MIT) MIT

  15. The earlyphase: 1995 - 1999 Vortices Boulder

  16. Optical dipole traps Working principle: exploit AC Stark shift single beam dipoletrap crosseddipoletrap 1 mm

  17. Optical dipole traps Arbitrarytrappingpotentialspossible Requirementsfor a gooddipoletrap: a lot of laserpower: 100 W @ 1064 nmavailable Pro: independent of magnetic sub-level, magneticfieldbecomesfreeparameter Con: high power laser, stabilization, limited trapdepth -> smalleratomnumber

  18. Ultracold Fermi gases The challenge: • Identicalfermions do not collideatultralowtemperatures • Fermions aremoresubtlethanbosons -> everythingismoredifficult The solution: Take tow different spin-statesoradmixbosons Duke university

  19. After release from the trap Bosons (rubidium) Fermions (potassium) Ultracold Fermi gases Bose-Fermi mixtures Florence

  20. Optical lattices Laser configuration 2D lattice (makes 1D tubes) 3D lattice Band structure

  21. Optical lattices Expansion of a superfluid: interferencepatternvisible Expansion withoutcoherence Munich

  22. Optical lattices Superfluidity: tunnelingdominates Mott insulator: Interaction energy Dominates (nointerference)

  23. Atoms meetsolids: atomchips Working principle: makeminiaturizedmagnetic traps withminaturizedelectricwires: HomogeneousOffest-field Magneticfield of a wire Trapping potential fortheatomsalongthewire => one-dimensional geometry

  24. Atom chips Todays‘ssetup: Basel

  25. Atom chips: 1D physics Radial confinementleadstostrongerinteraction Lieb-Linigerinteractionparameter: Inducedantibunching: Tonks-Girardeau gas Penn state

  26. Newton‘scradlewithatoms Penn State

  27. Feshbachresonances Microscopicinnteractionmechanismsbetweentheultacoldatoms: s-wavescattering, and (moreandmoreoften) dipole-dipole interaction Change the s-wavescatteringlength via magneticfield: Working principle:

  28. Genericproperties of a Feshbachresonance The situationforfermionic6Li: Unitaryregime Repulsive interaction Attractiveinteraction

  29. Making ultracoldmolecules Evaporativecooling in a dipoletrap Maximum possiblenumber of trapped non-interactingfermions a = + 3500 a0 a = - 3500 a0 Innsbruck

  30. Molecules form Bose-Einstein condensates Twofermionicatoms form a bosonicmolecule Result:bimodaldistribution of moleculardensitydistribution Condensatefraction Boulder

  31. Controlling theinteractionbetweenfermions a>0: weak repulsive interaction, BEC of molecules a<0: weakattractiveinteraction, BCS type of pairing Whathappens in between?

  32. Test superfluiditywithcreation of vortices Set atoms in rotationandtestsuperfluiditybytheformationof vortices MIT

  33. Unitaryregime Result: fermionare superfluid acrossthecrossover MIT

  34. Dynamic of inelasticprocesses Lifetime of thevortices MIT

  35. Single atomdetection Fluorescenceimaging: • shine resonant light on atomsandkeepthemtrappedatthe same time • collectenoughphotonstodetecttheatoms Single atoms in a 1D opticallattice Bonn

  36. Single atomdetection in a 2D system The Mott insulatorstate Munich

  37. Single atomdetectionwithelectronmicroscopy Comeandseetomorrow!

More Related