150 likes | 351 Views
彰師大積體電路設計所 A 9–50-GHz Gilbert-Cell Down-Conversion Mixer in 0.13- μ m CMOS Technology Chin-Shen Lin , Student Member, IEEE , Pei-Si Wu , Student Member, IEEE , Hong-Yeh Chang , Member, IEEE ,and Huei Wang , Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 5, MAY 2006.
E N D
彰師大積體電路設計所A 9–50-GHz Gilbert-Cell Down-ConversionMixer in 0.13-μm CMOS TechnologyChin-Shen Lin, Student Member, IEEE, Pei-Si Wu, Student Member, IEEE, Hong-YehChang, Member, IEEE,and Huei Wang, Fellow, IEEEIEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 5, MAY 2006 指導教授:林志明 級別:碩一 學生:呂致遠 Mail:s94662010@mail.ncue.edu.tw
Outline • Abstact • Introduction • Circuit Design • Schematic • Chip photo • Experimental Results • Conclusion • References
ABSTRACT • Broadband microwave/millimeter-wave (MMW) Gilbert-cell mixer • 1P8M 0.13-μm CMOS • Microstrip line is employed for the matching networks and transformer design • RF and LO to IF are better than 40 dB • RF-to-LO and LO-to-RF isolations are all better than 20 dB.
INTRODUCTION • CMOS technology demonstrated for wireless applications in (MMW) frequencies • 60GHz LNA, 51GHz VCO • SiGe based HBT Gilbert-cell mixer to 30.5GHz • CMOS Gilbert-cell mixer below 10GHz • A singly balance mixer from 26 to 34 GHz • FET mixer from 30 to 40 GHz
Circuit Design • Use Gilbert-cell core • The charge injection technique is also employed in this circuit. Two resistors are used to inject current into Q1 and Q2 • Two common drain buffer stages are added to achieve the impedance matching
Schematic Injection technique Gilbert-cell core common drain Buffer Balun Current Mirror
Chip photo IF+ IF- VDD LO GND ON WAFER RF
Conclusion • A CMOS Gilbert-cell mixer is designed, fabricated, and measured for microwave/MMW applications. To the best of ourknowledge, this is the highest frequency CMOS Gilbert-cell mixer to date. This MMIC mixer exhibits a broadband mixer with conversion gain and is suitable for MMW receiver applications.
REFERENCES • [1] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Design • of CMOS for 60 GHz applications,” in IEEE int. Solid-State Circuits • Conf. Dig., San Francisco, CA, 2004, pp. 440–538. • [2] M. Tiebout, H. D.Wohlmuth, and W. Simburger, “A 1 V 51 GHz fullyintegrated • VCO in 0.12- m CMOS,” in IEEE Int. Solid-State Circuits • Conf. Dig., San Francisco, CA, 2002, pp. 238–239. • [3] R. C. Liu, H. Y. Chang, C. H. Wang, and H. Wang, “A 63-GHz VCO • using a standard 0.25- m CMOS process,” in IEEE Int. Solid-State • Circuits Conf. Dig., San Francisco, CA, 2004, pp. 446–447. • [4] H. Shigematsu, M. Sato, T. Hirose, F. Brewer, and M. Rodwell, “A 40 • Gb/s CMOS distributed amplifier for fiber-optic communication systems,” • in IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, • 2004, pp. 476–477. • [5] B. S. Tzeng, C. H. Lien, H. Wang, Y. C. Wang, P. C. Chao, and C. • H. Chen, “A 1–17-GHz InGaP-GaAs HBT MMIC analog multiplier • and mixer with broad-band input-matching networks,”IEEE Trans. Microw. • Theory Tech., vol. 50, no. 11, pp. 2564–2568, Nov. 2002. • [6] E. Martins, E. M. Bastida, and J. W. Swart, “Design and performance of • Gilbert cell mixer MMIC’s with GaAs PHEMT technology,” in Proc. • IEEE Microw. Optoelectron. Conf., Aug. 2001, vol. 1, pp. 245–248.
[7] E. Martins, M. V. G. Gomes, E. M. Bastida, and J. W. Swart, “Design • of a LNA and a Gilbert cell mixer MMIC’s with a GaAs PHEMT technology,” • in Proc. IEEE Microw. Optoelectron. Conf., Aug. 1999, vol. • 1, pp. 267–270. • [8] K. Osafune and Y. Yamauchi, “20-GHz 5-dB-gain analog multipliers • with AlGaAs/GaAs HBTs,”IEEE Trans. Microw. Theory Tech., vol. • 42, no. 3, pp. 518–520, Mar. 1994. • [9] S. H. Lee, J. Y. Lee, S. Y. Lee, C. W. Park, S. H. Kim, H. C. Bae, J. Y. • Kang, and K. I. Cho, “A 5.8 GHz mixer using SiGe HBT process,” in • Eur. Microw. Conf. Dig., Oct. 2003, vol. 1, pp. 403–406. • [10] K. B. Schad, H. Schumacher, and A. Schuppen, “Low-power active • mixer for Ku-band application using SiGe HBT MMIC technology,” • in IEEE MTT-S Int. Dig., Jun. 2000, vol. 1, pp. 397–400. • [11] M. Wurzer, T. F. Meister, S. Hackl, H. Knapp, and L. Treitinger, “30 • GHz active mixer in a Si/SiGe bipolar technology,” in Proc. Asia-Pacific • Microw. Conf., Dec. 2000, pp. 780–782. • [12] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic • integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Dig., • Jun. 2002, vol. 2, pp. 1241–1244. • [13] P. J. Sulivan, B. A. Xavier, and W. H.Ku, “Lowvoltage performance of • a microwave CMOS Gilbert cell mixer,”IEEE J. Solid-State Circuits, • vol. 32, no. 7, pp. 1151–1155, Jul. 1997. • [14] M. B. Bendak, B. A. Xavier, and P. M. Chau, “A 1.2 GHz CMOS • quadrature self-oscillating mixer,” in Proc. IEEE Int. Symp. Circuits • Syst., Jun. 1999, vol. 5, pp. 434–437. • [15] C. C. Tang, W. S. Lu, L. D. Van, and W. S. Feng, “A 2.4-GHz CMOS • down-conversion doubly balanced mixer with low supply voltage,” in • Proc. IEEE Int. Symp. Circuits Syst., May 2001, vol. 4, pp. 794–797. • [16] T. Chouchane and M. Sawan, “A 5-GHz CMOS RF mixer in 0.18-m • CMOStechnology,” in Proc. IEEE Conf. Elect. Comp. Eng.,May 2003, • vol. 3, pp. 1905–1908
[17] X.Wang, R.Weber, and D. Chen, “A novel 1.5 V CMFB CMOS downconversion • mixer design for IEEE 802.11a WLAN systems,” in Proc. • IEEE Int. Symp. Circuits Syst., May 2004, vol. 4, p. IV-373-6. • [18] M. D. Tsai and H. Wang, “A 0.3–25-GHz ultra-wideband mixer using • commercial 0.18- m CMOS technology,”IEEE Microw. Wireless • Compon. Lett., vol. 14, no. 11, pp. 522–524, Nov. 2004. • [19] A. Verma, L. Gao, and J. Lin, “A K-band down-conversion mixer with • 1.4-GHz bandwidth in 0.13- m CMOS technology,”IEEE Microw. • Wireless Compon. Lett., vol. 15, no. 8, pp. 493–495, Aug. 2005. • [20] F. Ellinger, “26–34 GHz CMOS mixer,”Electron. Lett., vol. 40, pp. • 1417–1419, Oct. 2004. • [21] ——, “26.5–30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology • with high linearity for WLAN,”IEEE Trans. Microw. Theory • Tech., vol. 53, no. 8, pp. 2559–2565, Aug. 2005. • [22] F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. • L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, • “30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI • SOI CMOS technology,”IEEE Trans. Microw. Theory Tech., vol. 52, • no. 5, pp. 1382–1391, May 2004. • [23] L. A. NacEachern and T. Manku, “A charge-injection method for • Gilbert cell biasing,” in Proc. IEEE Canadian Conf. Elect. Comp. • Eng., May 1998, vol. 1, pp. 365–368.