1.41k likes | 1.52k Views
第十二章 药物制剂的稳定性. 第一节 概 述. 一、研究药物制剂稳定性的意义 药物制剂的基本要求应该是安全、有效、稳定。稳定系指药物在体外的稳定性。药物若分解变质,不仅可使疗效降低,有些药物甚至产生毒副作用,故药物制剂稳定性对保证制剂安全有效是非常重要的。 现在药物制剂已基本上实现机械化大生产,若产品因不稳定而变质,则在经济上可造成巨大损失。因此,药物制剂稳定性是制剂研究、开发与生产中的一个重要问题 。.
E N D
第一节 概 述 一、研究药物制剂稳定性的意义 药物制剂的基本要求应该是安全、有效、稳定。稳定系指药物在体外的稳定性。药物若分解变质,不仅可使疗效降低,有些药物甚至产生毒副作用,故药物制剂稳定性对保证制剂安全有效是非常重要的。 现在药物制剂已基本上实现机械化大生产,若产品因不稳定而变质,则在经济上可造成巨大损失。因此,药物制剂稳定性是制剂研究、开发与生产中的一个重要问题。
随着制药工业的发展,药物制剂的品种越来越多,某些抗生素制剂、生化制剂、蛋白多肽类药物制剂、维生素制剂及某些液体制剂的稳定性问题甚为突出。 • 注射剂的稳定性,更有意义。若将变质的注射液注入人体,则非常危险。药物产品在不断更新,一个新的产品,从原料合成、剂型设计到制剂研制,稳定性研究是其中最基本的内容。 • 我国已经规定,新药申请必须呈报有关稳定性资料。因此,为了合理地进行剂型设计,提高制剂质量,保证药品疗效与安全,提高经济效益,必须重视药物制剂稳定性的研究。
二、研究药物制剂稳定性的任务 • 药物制剂稳定性一般包括化学、物理和生物学三个方面。 • 化学稳定性是指药物由于水解、氧化等化学降解反应,使药物含量(或效价)、色泽产生变化。 • 物理稳定性方面,如混悬剂中药物颗粒结块、结晶生长,乳剂的分层、破裂,胶体制剂的老化,片剂崩解度、溶出速度的改变等,主要是制剂的物理性能发生变化。 • 生物学稳定性一般指药物制剂由于受微生物的污染,而使产品变质、腐败。
研究药物制剂稳定性的任务,就是探讨影响药物制剂稳定性的因素与提高制剂稳定化的措施,同时研究药物制剂稳定性的试验方法,制订药物产品的有效期,保证药物产品的质量,为新产品提供稳定性依据。研究药物制剂稳定性的任务,就是探讨影响药物制剂稳定性的因素与提高制剂稳定化的措施,同时研究药物制剂稳定性的试验方法,制订药物产品的有效期,保证药物产品的质量,为新产品提供稳定性依据。 • 关于物理稳定性和生物学稳定性,在本书其它章节已作了介绍,故本章不再赘述。
第二节 药物稳定性的化学动力学基础 • 20世纪50年代初期Higuchi等用化学动力学的原理来评价药物的稳定性。化学动力学在物理化学中已作了详细论述,此处只将与药物制剂稳定性有关的某些内容,简要的加以介绍。
一、反应级数 • 研究药物降解的速率,首先遇到的问题是浓度对反应速率的影响。 • 反应级数是用来阐明反应物浓度与反应速率之间的关系。 • 反应级数有零级、一级、伪一级及二级反应;此外还有分数级反应。 • 在药物制剂的各类降解反应中,尽管有些药物的降解反应机制十分复杂,但多数药物及其制剂可按零级、一级、伪一级反应处理。
(一)零级反应 凡反应速率与反应物浓度无关,而受其它因素影响的反应,称为零级反应,其它因素如反应物的溶解度,或某些光化反应中光的照度等。零级反应的微分速率方程为 积分式为C0-C=k0t或C=C0-k0t 式中,Co——t=0时反应物浓度;C——t时反应物的浓度;ko——零级速率常数,其量纲为[浓度] .[时间]-1,单位为mol.L-1s。C与t呈线性关系,直线的斜率为- ko,截距为Co。复方磺胺液体制剂的颜色消退符合零级反应动力学。
(二)一级反应 凡反应速率与反应物浓度的一次方成正比的反应称为一级反应,其微分速率方程为 积分式为 lgC= + lgCo或C=Coe-kt 式中,k——一级速率常数,其量纲为[时间]-1,单位为S-1(或min-1,h-1,d-1等)。以lgC与t作图呈直线,直线的斜率为-k/2.303,截距为lgCo。
通常将反应物消耗一半所需的时间为半衰期(half life),记作t1/2,恒温时,t1/2与反应物浓度无关。 (11-3) 对于药物降解,常用降解10%所需的时间,称十分之一衰期,记作t0.9,恒温时,t0.9也与反应物浓度无关。 (11-4)
如果反应速率与两种反应物浓度的乘积成正比的反应,称为二级反应。如果反应速率与两种反应物浓度的乘积成正比的反应,称为二级反应。 • 若其中一种反应物的浓度大大超过另一种反应物,或保持其中一种反应物浓度恒定不变的情况下,则此反应表现出一级反应的特征,故称为伪一级反应。例如酯的水解,在酸或碱的催化下,可用伪一级反应处理。
化学动力学相关公式 = K = KC lgC=- +lgC0 = KC2 = Kt +
二、温度对反应速率的影响与药物稳定性预测 一)阿仑尼乌斯(Arrhenius)方程。 大多数反应温度对反应速率的影响比浓度更为显著,温度升高时,绝大多数化学反应速率增大。Arrhenius根据大量的实验数据,提出了速率常数与温度之间的关系式,即著名的Arrhenius经验公式
(11-5) 式中, A——频率因子;E——为活化能;R——为气体常数。上式取对数形式为 lg k= +lgA或 lg (11-6)
(二)药物稳定性预测 • 药物稳定性预测有多种方法,但基本的方法仍是经典恒温法,根据Arrhenius方程以lg k对1/T作图得一直线,此图称Arrhenius图,直线斜率=-E/(2.303R),由此可计算出活化能E。 • 若将直线外推至室温,就可求出室温时的速度常数(k25)。由k25可求出分解10%所需的时间(即t0.9)或室温贮藏若干时间以后残余的药物的浓度。
实验时,首先设计实验温度与取样时间。计划好后,将样品放入各种不同温度的恒温水浴中,定时取样测定其浓度(或含量),求出各温度下不同时间药物的浓度变化。 以药物浓度或浓度的其它函数对时间作图,以判断反应级数。若以lg C对t作图得一直线,则为一级反应。再由直线斜率求出各温度的速度常数,然后按前述方法求出活化能和t0.9。
要想得到预期的结果,除了精心设计实验外,很重要的问题是对实验数据进行正确的处理。化学动力学参数(如反应级数、k 、E、t1/2)的计算,有图解法和统计学方法,后一种方法比较准确、合理,故近来在稳定性的研究中广泛应用。 • 下面介绍线性回归法。例如某药物制剂,在40℃、50℃、60℃、70℃四个温度下进行加速实验,测得各个时间的浓度,确定为一级反应,用线性回归法求出各温度的速度常数,结果见表11-1
t/℃ 1/T×103 k×105/h-1 lgk 40 3.192 2.66 -4.575 50 3.094 7.94 -4.100 60 3.001 22.38 -3.650 70 2.913 56.50 -3.248 表11-1 动力学数据表
将上述数据(lgk对1/T)进行一元线性回归,得回归方程:将上述数据(lgk对1/T)进行一元线性回归,得回归方程: lg k=-4765.98/T+10.64 E= - (4765.98)×2.303×8.319=91309.77(J/mol) =91.31(kJ/mol) 求25℃时的k lgk=-4765.98/298+10.64 k25=4.434×10-6h-1 t0.9= 年
由于药物反应十分复杂,影响因素较多,此种方法预测稳定性与实际尚有一定距离。故此法目前在新药研究中只作参考,不能作为制订有效期的依据,药物制剂有效期,仍以长期试验来确定。由于药物反应十分复杂,影响因素较多,此种方法预测稳定性与实际尚有一定距离。故此法目前在新药研究中只作参考,不能作为制订有效期的依据,药物制剂有效期,仍以长期试验来确定。
第三节 制剂中药物化学降解途径 • 药物由于化学结构的不同,其降解反应也不一样,水解和氧化是药物降解二个主要途径。其他如异构化、聚合、脱羧等反应,在某些药物中也有发生。有时一种药物还可能同时产生两种或两种以上的反应。
一、水解 • 水解是药物降解的主要途径,属于这类降解的药物主要有酯类(包括内酯)、酰胺类(包括内酰胺)等。 • (一)酯类药物的水解 • 含有酯键药物的水溶液,在H+或OH-或广义酸碱的催化下,水解反应加速。特别在碱性溶液中,由于酯分子中氧的负电性比碳大,故酰基被极化,亲核性试剂OH-易于进攻酰基上的碳原子,而使酰-氧键断裂,生成醇和酸,酸与OH-反应,使反应进行完全。 • 盐酸普鲁卡因的水解可作为这类药物的代表,水解生成对氨基苯甲酸与二乙胺基乙醇,此分解产物无明显的麻醉作用。
对乙酰水杨酸的水解过程曾作过详细的研究,在所研究的范围,有六个不同的降解途径,但仍然可用伪一级反应来处理。酯类水解,往往使溶液的pH下降,有些酯类药物灭菌后pH下降,即提示有水解可能。对乙酰水杨酸的水解过程曾作过详细的研究,在所研究的范围,有六个不同的降解途径,但仍然可用伪一级反应来处理。酯类水解,往往使溶液的pH下降,有些酯类药物灭菌后pH下降,即提示有水解可能。 内酯与酯一样,在碱性条件下易水解开环。硝酸毛果芸香碱、华法林钠均有内酯结构,可以产生水解。
(二)酰胺类药物的水解 • 酰胺类药物水解以后生成酸与胺。属这类的药物有氯霉素、青霉素类、头孢菌素类、巴比妥类等药物。此外如利多卡因、对乙酰氨基酚(扑热息痛)等也属此类药物。 • 氯霉素在水中的分解主要是酰胺水解,生成氨基物与二氯乙酸。
在pH2~7范围内,pH对水解速度影响不大。在pH 6最稳定。在pH 2以下或8以上水解作用加速。而且在pH>8时还有脱氯的水解作用。氯霉素水溶液120C加热,氨基物可能进一步发生分解生成对硝基苯甲醇。水溶液对光敏感,在pH 5.4暴露于日光下,变成黄色沉淀。对光解产物进行分析,结果表明可能是由于进一步发生氧化、还原和缩合反应所致。
青霉素类药物的分子中存在着不稳定的-内酰胺环,在H+或OH-影响下,很易裂环失效。如氨苄青霉素在酸、碱性溶液中,水解产物为氨苄青霉酰胺酸。青霉素类药物的分子中存在着不稳定的-内酰胺环,在H+或OH-影响下,很易裂环失效。如氨苄青霉素在酸、碱性溶液中,水解产物为氨苄青霉酰胺酸。 • 氨苄青霉素水溶液最稳定的pH为5.8。pH 6.6时,t1/2为39天。本品只宜制成固体剂型(注射用无菌粉末)。注射用氨苄青霉素钠在临用前可用0.9%氯化钠注射液溶解后输液,但10%葡萄糖注射液对本品有一定的影响,最好不要配合使用,若两者配合使用,也不宜超过1h。乳酸钠注射液对本品水解有显着的催化作用,二者不能配合[1]。
(三)其它药物的水解 阿糖胞苷在酸性溶液中,脱氨水解为阿糖脲苷。在碱性溶液中,嘧啶环破裂,水解速度加快。 另外,如维生素B、地西泮、碘苷等药物的降解,主要也是水解作用。 本品在pH 6.9时最稳定,水溶液经稳定性预测t0.9约为11个月左右,常制成注射粉针剂使用。
二、氧化 氧化也是药物变质最常见的反应。失去电子为氧化。在有机化学中常把脱氢称氧化。药物氧化分解常是自动氧化。即在大气中氧的影响下进行缓慢的氧化过程。自氧化反应常为游离的链式反应,如以RH代表药物,一般链反应分以下三步: 第一步 链开始形成: 第一步链开始形成 第二步 链传播: RO + O2 ROO
过氧化根ROO从有机物中夺取H形成氢过氧化物:过氧化根ROO从有机物中夺取H形成氢过氧化物: ROO + RH ROOH + R 金属离子能催化此传播过程。 第三步 为链反应终止期,游离基抑制剂X,或二个游离基结合形成一个非游离基,链反应终止:
氧化过程一般都比较复杂,有时一个药物,氧化、光化分解、水解等过程同时存在。 • 药物的氧化作用与化学结构有关,许多酚类、烯醇类、芳胺类、吡唑酮类、噻嗪类药物较易氧化。药物氧化后,不仅效价损失,而且可能产生颜色或沉淀。有些药物即使被氧化极少量,亦会色泽变深或产生不良气味,严重影响药品的质量,甚至成为废品。
(一)酚类药物 • 这类药物分子中具有酚羟基,如肾上腺素、左旋多巴、吗啡、去水吗啡、水杨酸钠等。 左旋多巴氧化后形成有色物质,最后产物为黑色素。左旋多巴用于治疗震颤麻痹症,拟定处方时应采取防止氧化的措施。肾上腺素的氧化与左旋多巴类似,先生成肾上腺素红,最后变成棕红色聚合物或黑色素。 • (二)烯醇类药物 维生素C是这类药物的代表,分子中含有烯醇基,极易氧化,氧化过程较为复杂。在有氧条件下,先氧化成去氢抗坏血酸,然后经水解为2、3二酮古罗糖酸,此化合物进一步氧化为草酸与L-丁糖酸。
在无氧条件下,发生脱水作用和水解作用生成呋喃甲醛和二氧化碳,由于H+的催化作用,在酸性介质中脱水作用比碱性介质快,实验中证实有二氧化碳气体产生。在无氧条件下,发生脱水作用和水解作用生成呋喃甲醛和二氧化碳,由于H+的催化作用,在酸性介质中脱水作用比碱性介质快,实验中证实有二氧化碳气体产生。
(三)其它类药物 芳胺类如磺胺嘧啶钠。吡唑酮类如氨基比林、安乃近。噻嗪类如盐酸氯丙嗪、盐酸异丙嗪等。这些药物都易氧化,其中有些药物氧化过程极为复杂,常生成有色物质。含有碳-碳双键的药物如维生素A或D的氧化,是典型的游离基链式反应。易氧化药物要特别注意光、氧、金属离子对他们的影响,以保证产品质量。
三、其它反应 • (一)异构化 • 异构化一般分光学异构化(optical isomerization)和几何异构(geometric isomerization)二种。通常药物异构化后,生理活性降低甚至没有活性。 • 1. 光学异构化光学异构化可分为外消旋化作用(racemization)和差向异构(epimerization)。左旋肾上腺素具有生理活性,外消旋以后,只有50%的活性。本品水溶液在pH 4左右产生外消旋化作用。肾上腺又是易氧化的药物,故还要从含量色泽等全面质量要求考虑,选择适宜的pH。左旋莨菪碱也可能外消旋化。外消旋化反应经动力学研究系一级反应。
差向异构化指具有多个不对称碳原子上的基团发生异构化的现象。四环素在酸性条件下,在4位上碳原子出现差向异构形成4差向四环素。现在已经分离出差向异构四环素,治疗活性比四环素低。毛果芸香碱在碱性pH时,a-碳原子也存在差向异构化作用,生成异毛果芸香碱,为伪一级反应。麦角新碱也能差向异构化,生成活性较低的麦角袂春宁(ergometrinine)。 • 2. 几何异构化 有些有机药物,反式异构体与顺式几何异构体的生理活性有差别。维生素A的活性形式是全反式(all-trans)。在多种维生素制剂中,维生素A除了氧化外,还可异构化,在2, 6位形成顺式异构化,此种异构体的活性比全反式低。
(二)聚合 • 聚合(polymerization)是两个或多个分子结合在一起形成的复杂分子。 • 已经证明氨苄青霉素浓的水溶液在贮存过程中能发生聚合反应,一个分子的-内酰胺环裂开与另一个分子反应形成二聚物。此过程可继续下去形成高聚物。据报告这类聚合物能诱发氨苄青霉素产生过敏反应。甲醛聚合生成三聚甲醛,这是大家熟知的现象。 • 噻替派在水溶液中易聚合失效,以聚乙醇400为溶剂制成注射液,可避免聚合,使本品在一定时间内稳定。
(三)脱羧 • 对氨基水杨酸钠在光、热、水分存在的条件下很易脱羧,生成间氨基酚,后者还可进一步氧化变色。 • 普鲁卡因水解产物对氨基苯甲酸,也可慢慢脱羧生成苯胺,苯胺在光线影响下氧化生成有色物质,这就是盐酸普鲁卡因注射液变黄的原因。 • 碳酸氢钠注射液热压灭菌时产生二氧化碳,故溶液及安瓿空间均应通以二氧化碳。
第四节 影响药物制剂降解的因素及稳定化方法 • 影响药物制剂分解的因素很多,从处方因素与外界因素两个方面来讨论。 • 一、处方因素对药物制剂稳定性的影响及解决方法 • 制备任何一种制剂,首先要进行处方设计,因处方的组成对制剂稳定性影响很大。pH、广义的酸碱催化、溶剂、离子强度、表面活性剂、某些辅料等因素,均可影响易于水解药物的稳定性。
(一)pH的影响 • 许多酯类、酰胺类药物常受H+或OH-催化水解、这种催化作用也叫专属酸碱催化(specific acid-base catalysis)或特殊酸碱催化,此类药物的水解速度,主要由pH决定。pH对速度常数K的影响可用下式表示: • k = k0 + kH+ [H+] + kOH- [OH-] • (11-7) 式中,k0——参与反应的水分子的催化速度常数;kH+,kOH-——H+和OH-离子的催化速度常数。在pH很低时,主要是酸催化,则上式可表示为: lgk = lgkH+ pH (11-8)
以lgk对pH作图得一直线,斜率为-1。设Kw为水的离子积即Kw=[H+][OH-],故在pH较高时得:以lgk对pH作图得一直线,斜率为-1。设Kw为水的离子积即Kw=[H+][OH-],故在pH较高时得: • lgk = lgkOH- + lgKw + pH (11-9) • 以lgk对pH作图得一直线,斜率为+1,在此范围内主要由OH-催化。这样,根据上述动力学方程可以得到反应速度常数与pH关系的图形,如图11-1。这样图形叫pH-速度图。在pH-速度曲线图最低点所对应的横座标,即为最稳定pH,以pHm表示。
lgk 图11-1 pH速度图
pH-速度图有各种形状,一种是V型图,如图11-1。药物水解,典型的V型图是不多见的。硫酸阿托品、青霉素G在一定pH范围内的pH-速度图与V型相似。硫酸阿托品水溶液最稳定pH为3.7,因其kOH-比kH+大,故pHm出现在酸性一侧,本品0.05%、pH6.54的水溶液120C 30分钟分解3.4%,而在pH7.3磷酸缓冲液120C同样时间则分解达51.8%。硫酸阿托品注射液的pH《中国药典》1995年版规定3.5~5.5,实际生产控制在4.0~4.5。青霉素G pHm为6.5,因kH+与kOH-相差不多。
某些药物的pH-速度图呈S型,如乙酰水杨酸水解pH-速度图,盐酸普鲁卡因pH速度图有一部分呈S型(如图11-2)。这是因为pH不同,普鲁卡因以不同的形式(即质子型和游离碱型)存在。 图11-2 37C普鲁卡因pH-速度图 图11-2 37C普鲁卡因pH-速度图
令RCOOR代表普鲁卡因游离碱,RCOOR H+代表质子型普鲁卡因,则水解反应式可写成:
故动力学速度方程为: • 速度 = kH+[RCOORH+][H+]+k’ [RCOORH+] • + kOH-[RCOORH+][OH-]+kOH-[RCOOR][OH-] • (11-10) • 式中,kH+,kOH-——质子型普鲁卡因专属酸催化和碱催化二级速度常数;k——质子型普鲁卡因一级速度常数;kOH-——普鲁卡因游离碱专属碱催化二级速度常数。
根据上述速度方程,在pH2.5以下主要为质子型普鲁卡因的专属酸催化,而在pH5.5~8.5时,是质子型的碱催化。曲线S型部分是由普鲁卡因去质子作用而形成游离碱的结果。在pH12以上是游离碱的专属碱催化。如果在pH4,则上述动力方程可简化为根据上述速度方程,在pH2.5以下主要为质子型普鲁卡因的专属酸催化,而在pH5.5~8.5时,是质子型的碱催化。曲线S型部分是由普鲁卡因去质子作用而形成游离碱的结果。在pH12以上是游离碱的专属碱催化。如果在pH4,则上述动力方程可简化为 速度=k[RCOORH+] (11-11) • 可按一级反应处理。在其它pH范围,若用缓冲液控制其pH,也符合一级反应(伪一级反应)。这样对整个曲线作出合理的解释。
pH值 5.0 5.5 6.0 6.5 7.0 t0.9/d 2800 900 280 90 28 • 盐酸普鲁卡因最稳定的pH为3.5左右,据研究本品水溶液t0.9与pH的关系如下表11-2。由此可见,pH对本品稳定性影响极大。盐酸普鲁卡因注射液《中国药典》(1995年版)规定pH为3.5~5.0,实际生产一般控制在4.0~4.5。若pH=8,则37C时的t1/2仅为66.5小时。 表11-2 盐酸普鲁卡因pH与t0.9的关系(20C)
确定最稳定的pH是溶液型制剂处方研究首先要解决的问题。pHm可以通过下式计算 pHm = pKw lg (11-12) 一般是通过实验求得,方法如下:保持处方中其它成分不变,配制一系列不同pH的溶液,在较高温度(恒温,例如60C)下进行加速实验。求出各种pH溶液的速度常数(k),然后以lgk对pH作图,就可求出最稳定的pH。在较高恒温下所得到的pHm一般可适用于室温,不致产生很大误差。三磷酸腺苷注射液最稳定的pH为9,就是用这种方法确定的。
一般药物的氧化作用,也受H+或OH-的催化,这是因为一些反应的氧化-还原电位依赖于pH值,对此可用醌与氢醌的例子说明. 根据Nernst方程 E=E0 + (11-13)