50 likes | 221 Views
Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet Date: ___________________________. Section I – Name the five ways to prove that parallel lines exist. 1. ____________________________________________________________________
E N D
Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet Date: ___________________________ Section I – Name the five ways to prove that parallel lines exist. 1. ____________________________________________________________________ ______________________________________________________________________ 2. ____________________________________________________________________ ______________________________________________________________________ 3. ____________________________________________________________________ ______________________________________________________________________ 4. ____________________________________________________________________ ______________________________________________________________________ 5. ____________________________________________________________________ ______________________________________________________________________ Section II – Identify the pairs of angles. 1. Ð1& Ð4 ______________________ 2. Ð3& Ð6 ______________________ 3. Ð8& Ð4 ______________________ 4. Ð2& Ð7 ______________________ 5. Ð3& Ð5 ______________________ 6. Ð1& Ð6 ______________________ 1 2 3 4 6 5 8 7 Section III – Fill In • 1.) Vertical angles are __________________________________________________________________ • 2.) Angles in a linear pair are _____________________________________________________________. • 3.) If two parallel lines are cut by a transversal, then corresponding angles are ________________________. • 4.) If two parallel lines are cut by a transversal, then alternate interior angles are _____________________. • 5.) If two parallel lines are cut by a transversal, then alternate exterior angles are ____________________. • 6.) If two parallel lines are cut by a transversal, then same side interior angles are ____________________. • 7.) If two parallel lines are cut by a transversal, then same side exterior angles are ___________________. 8. If two lines are perpendicular to a third, then the two lines are ___________________. 9. The sum of interior angles of a _________________ is 180. 10. The measure of an exterior Ð of a triangle is the sum of the two __________ __________ _________.
Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – Page 2 Date: ___________________________ Section IV – Determine which lines, if any, are parallel based on the given information. If there are parallel lines, state the reason they are parallel. 1.) mÐ1 = mÐ9 _________________________ _________________________ 2.) mÐ1 = mÐ4 _________________________ _________________________ 3.) mÐ12 + mÐ14 = 180 _________________________ _________________________ 4.) mÐ1 = mÐ13 _________________________ _________________________ 5.) mÐ7 = mÐ14 _________________________ _________________________ 6.) mÐ2 = mÐ11 _________________________ _________________________ 7.) mÐ15 + mÐ16 = 180 _________________________ _________________________ 8.) mÐ4 = mÐ5 _________________________ _________________________ 1 2 9 10 a 3 4 11 12 5 6 13 14 b 7 8 15 16 c d
Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – Page 3 Date: ___________________________ Section V – Name the following polygons – For triangles name each by side and angles; for all other polygons name whether each is irregular or regular, convex or not convex, and give its name based on the number of sides. 1. 2. 5 3 4 3. 4. 60 60 60 5. 6. 8 5 5 square 7. 8. 9 7 8
Section VI – Fill In the Chart Section VII– Find the slope of each line. (Change the equations into slope intercept form.) Determine which lines are parallel and which lines are perpendicular. Line a 8x – 2y = 10 Line b 4y = 6x Line c 2x + 3y = 9 Line d y = x Line e x + y = 2 Line f 5x – 4y = 4 Parallel lines __________________ ___________________ Perpendicular lines ________________ ________________
Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – Page 4 Date: ___________________________ Section X - Proofs Given: GK bisects ÐJGI mÐH = mÐ2 Prove: GK // HI J 1 G K 2 Statements Reasons 1. 1. Given 2. 2. I H 3. 3. 4. 4. 5. 5. Given: AJ // CK; mÐ1 = mÐ5 Prove: BD // FE Reasons Statements A C 1 2 3 B D 4 5 F E J K