1 / 27

Dimensionality Reduction: Given dataset D R N

MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology Oct 23, 2013: Cohomology II Fall 2013 course offered through the University of Iowa Division of Continuing Education Isabel K. Darcy, Department of Mathematics

kaethe
Download Presentation

Dimensionality Reduction: Given dataset D R N

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology Oct 23, 2013: Cohomology II Fall 2013 course offered through the University of Iowa Division of Continuing Education Isabel K. Darcy, Department of Mathematics Applied Mathematical and Computational Sciences, University of Iowa http://www.math.uiowa.edu/~idarcy/AppliedTopology.html

  2. Dimensionality Reduction: • Given dataset D RN • Want: embedding f: D  Rn where n << N • which “preserves” the structure of the data. • Many reduction methods: • f1: D  R,f2: D  R, …fn: D  R • (f1, f2, … fn): D  Rn U

  3. Goal f1: D  S1,f2: D  S1, …fn: D  S1 Note S1 is a ring: q1, q2 in S1 implies q1+ q2 and q1q2 are in S1

  4. circle courtesy of knotplot.com

  5. circle courtesy of knotplot.com

  6. Cohomology and circular coordinates: Let X = finite simplicial complex. X0 = set of 0-simplices = vertices. X1 = set of 1-simplices = edges. X2 = set of 2-simplices = faces. . . . v2 e1 e2 v1 v3 e3

  7. Cohomology and circular coordinates: Let X = finite simplicial complex, R a ring. C0(X, R) = set of 0-cochains = { f : X0 R } C1(X, R) = set of 1-cochains = { f : X1 R } C2(X, R) = set of 2-cochains = { f : X2 R } . . .

  8. coboundarymaps d0:C0 = { f : X0 R } → C1 = { f : X1 R } f : X0 R →d0f : X1 R (d0f )(ab) = f (b)− f (a) d1:C1 = {α : X1 R } → C2= {α : X2 R } α : X1 R →d1α: X2 R (d1α)(abc) = α(bc)− α(ac)+α(ab)

  9. Let α ∈ Ci , di : Ci= { f : Xi R } → Ci+1 = { f : Xi+1 R } α is a cocycle if diα = 0. I.e., α is in Ker(d1) α is a coboundary if there exists f in Ci-1 s.t. di-1f = α I.e., α is in Im(di-1) Note di di-1f = 0 for any f ∈ Ci-1. di di-1f = 0 implies Im (di-1) ⊆ Ker (di). Hi(X;A ) = Ker(di)/ Im(di-1).

  10. C0(X, R) = set of 0-cochains = { f : X0 R } = { f | f(v1) = r1, f(v2) = r2, f(v3) = r3; (r1, r2, r3) in R3 } C1(X, R) = set of 1-cochains = {α : X1 R } = {α| α(e1) = r1, α(e2) = r2, α(e3) = r3; (r1, r2, r3) in R3 } Hi(X;A ) = Ker (di)/ Im (di-1). 0  C0 C1 0 v2 e1 e2 v1 v3 e3

  11. C0(X, R) = set of 0-cochains = { f : X0 R } = { f | f(v1) = r1, f(v2) = r2, f(v3) = r3; (r1, r2, r3) in R3 } 0  C0  C1 H0(X;A ) = Ker (d0 )/ Im (d-1) = v2 e1 e2 v1 v3 e3

  12. C0(X, R) = set of 0-cochains = { f : X0 R } = { f | f(v1) = r1, f(v2) = r2, f(v1) = r3; (r1, r2, r3) in R3 } 0  C0  C1 H0(X;A ) = Ker (d0 )/ Im (d-1) = Ker (d0 ) v2 e1 e2 v1 v3 e3

  13. 0  C0  C1 Ker (d0 ) = ? Suppose d0f = 0 d0f (v1v2) = f(v2) – f(v1) = 0 implies f(v1) = f(v2). d0f (v2v3) = f(v3) – f(v2) = 0 implies f(v2) = f(v3). d0f (v3v1) = f(v1) – f(v3) = 0 implies f(v3) = f(v1). v2 e1 e2 Thus f is the constant map v1 v3 e3

  14. 0  C0  C1 Ker (d0 ) = { f | f(vi) = r for all i} Suppose d0f = 0 d0f (v1v2) = f(v2) – f(v1) = 0 implies f(v1) = f(v2). d0f (v2v3) = f(v3) – f(v2) = 0 implies f(v2) = f(v3). d0f (v3v1) = f(v1) – f(v3) = 0 implies f(v3) = f(v1). v2 e1 e2 Thus f is the constant map v1 v3 e3

  15. C0(X, R) = set of 0-cochains = { f : X0 R } = { f | f(v1) = r1, f(v2) = r2, f(v1) = r3; (r1, r2, r3) in R3 } 0  C0  C1 H0(X;A ) = Ker (d0 )/ Im (d-1) = Ker (d0) = { f | f(vi) = r for all i } v2 e1 e2 v1 v3 e3

  16. C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e3) = r3; (r1, r2, r3) in R3 } C0  C1  0 H1(X;R ) = Ker (d1)/ Im (d0 ) = v2 e1 e2 v1 v3 e3

  17. C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e1) = r3; (r1, r2, r3) in R3 } C0  C1  0 H1(X;R ) = Ker (d1)/ Im (d0 ) = C1/ Im (d0 ) v2 e1 e2 v1 v3 e3

  18. C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e1) = r3; (r1, r2, r3) in R3 } C0  C1  0 H1(X;R ) = Ker (d1)/ Im (d0 ) = C1/ Im (d0 ) Suppose f is in C0, then d0f in C1 is defined by: d0f (v1v2) = f(v2) – f(v1) d0f (v2v3) = f(v3) – f(v2) d0f (v3v1) = f(v1) – f(v3) v2 e1 e2 v1 v3 e3

  19. C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e1) = r3; (r1, r2, r3) in R3 } C0  C1  0 H1(X;R ) = Ker (d1)/ Im (d0 ) = C1/ Im (d0 ) Suppose f is in C0, then d0f in C1 is defined by: d0f (v1v2) = f(v2) – f(v1) d0f (v2v3) = f(v3) – f(v2) d0f (v3v1) = f(v1) – f(v3) Im(d0 ) = { f : X1R | f(e1) = r1, f(e2) = r2, f(e3) = -r1 - r2} v2 e1 e2 v1 v3 e3

  20. C1(X, R) = set of 1-cochains = {α : X1 R } = {α | α (e1) = r1, α(e2) = r2, α(e1) = r3; (r1, r2, r3) in R3 } Im(d0 ) = { f : X1R | f(e1) = r1, f(e2) = r2, f(e3) = -r1 - r2} C0 C1  0 H1(X;R ) = Ker (d1)/ Im (d0 ) = C1/ Im (d0) = { f | f(e1) = r1, f(e2) = r2, f(e3) = r3}/ Im (d0 ) = { f | f(e1) = r1, f(e2) = r2, f(e3) = r3} { f : X1R | f(e1) = r1, f(e2) = r2, f(e3) = -r1 - r2}

  21. Persistent Cohomology e1 < e2 < … < em X(e1) < X(e2) < … < X(em) Ci(X(ej), R)= { f : Xi(ej)  R }  …  Ci(X(e1), R) Ci(X(e2, R))  … Ci(X(em, R)) Hi(X(e1), R) Hi(X(e2, R))  … Hi(X(em, R)) R R R

  22. Proposition 1: Let α ∈ C1(X;Z) be a cocycle. Then there exists a continuous function θ : X → S1 which maps each vertex to 0, and each edge ab around the entire circle with winding number α(ab). v2 → e1 e2 v1 v3 e3

  23. Proposition 1: Let α ∈ C1(X;Z) be a cocycle. Then there exists a continuous function θ : X → S1 which maps each vertex to 0, and each edge ab around the entire circle with winding number α(ab). →

  24. Proposition 1: Let α ∈ C1(X;Z) be a cocycle. Then there exists a continuous function θ : X → S1 which maps each vertex to 0, and each edge ab around the entire circle with winding number α(ab). v2 → e1 e2 v1 v3 e3

  25. Proposition 2: 2 Let α ∈ C1(X;R) be a cocycle. Suppose there existsα ∈ C1(X;Z) and f ∈ C0(X;R) such that α = α + d0f . Then there exists a continuous function θ : X → S1 which maps each edge ablinearly to an interval of length α(ab), measured with sign. v2 → e1 e2 v1 v3 e3

  26. θ: X → R/Z = S1

More Related