250 likes | 342 Views
Computation in neural networks. M. Meeter. Calculating a function. Perceptron learning problem Input Patterns Desired output [+1, +1, -1, -1] [+1, -1, +1] [-1, -1, +1, +1] [+1, +1, -1] [-1, -1, -1, -1]
E N D
Computation in neural networks M. Meeter
Calculating a function Perceptron learning problem Input Patterns Desired output [+1, +1, -1, -1] [+1, -1, +1] [-1, -1, +1, +1] [+1, +1, -1] [-1, -1, -1, -1] [-1, -1, +1, -1] [-1, -1, -1] [-1, +1, +1, -1] [-1, +1, +1] [+1, -1, +1, -1]
Types of networks & functions • Attractor • Feedfwrd Hebbian • associative (Hebbian) • competitive • Feedfwrd error corr. • perceptron • backprop • completion, autoass. memory • association, assoc. memory • clustering • categorization, generalization • nonlinear, same
Types of networks • Attractor • Feedfwrd Hebbian • associative (Hebbian) • competitive • Feedfwrd error corr. • perceptron • backprop • completion, autoass. memory • association, assoc. memory • clustering • categorization, generalization • nonlinear, same
A Classification
Generalization 76 128 ?
Regression = generalization Univariate Linear Regression prediction of values
Types of networks • Attractor • Feedfwrd Hebbian • associative (Hebbian) • competitive • Feedfwrd error corr. • perceptron • backprop • completion, autoass. memory • association, assoc. memory • clustering • categorization, generalization • nonlinear, same
Classification - discrete Perceptron learning problem Prototypical Input Patterns Desired output [+1, +1, -1, -1] [+1, -1, +1] [-1, -1, +1, +1] [+1, +1, -1] [-1, -1, -1, -1] [-1, -1, +1, -1] [-1, -1, -1] [-1, +1, +1, -1] [-1, +1, +1] [+1, -1, +1, -1]
Classification - discrete Perceptron learning problem Prototypical Input Patterns Desired output [+1, +1, -1, -1] [+1, -1, +1] [-1, -1, +1, +1] [+1, +1, -1] [-1, -1, -1, -1] [-1, -1, +1, -1] [-1, -1, -1] [-1, +1, +1, -1] [-1, +1, +1] [+1, -1, +1, -1]
Xi X1 X2 Xn Classification in Perceptron wji threshold
Effe tussendoor… • Bij perceptron etc.: net input knoop>0 dan activatie 0 • Niet altijd gewenst: daarom heeft knoop in continue vormen perceptron / backprop een ‘bias’, een activatie die altijd bij input opgeteld wordt • Effect: verschuiven threshold
- Threshold Input= + Input= mixture Threshold Classification in 2 dimensions
Discriminant Analysis Find center of two categories, draw line in between, then one diagonal in middle = discrimination line Produces exact same result
Generalization = Regression Univariate Linear Regression prediction of values
Activation function Xi (·) X1 X2 v = xi*wji (v) = av + b Xn Perceptron with linear activation rule y wji j Change weights with rule, minimizing Se2 Bias
X 1 X 2 X i X n Multivariate Multiple Linear Regression Multivariate = multiple independent variables X =multiple inputs y 1 1 y 2 2 Multiple = multiple dependent variables Y =multiple outputs Y2 X Y1
linear nonlinear y y x x Linear vs. nonlinear regression • Here: quadratic • General: wrinkle-fitting
X X Multi-Layer Perceptron å = v x * w i ji i y1 y2 • Fit any function: “Universal approximators” X= [x1, x2, .., xi, .., xn]
Too complex model y x Bad Extremely bad Overfitting y Too simple model x
Clustering Competitive learning: • next week • ART
Conclusions • Neural networks similar to statistical analyses • Perceptron -> categorization / generalization • Backprop -> same but nonlinear • Competitive l. -> clustering • But… • Whole data set vs. one pattern at a time
? ? Feature extraction with PCA Unsupervised Learning Hebbian Learning