1 / 25

Computation in neural networks

Computation in neural networks. M. Meeter. Calculating a function. Perceptron learning problem Input Patterns Desired output [+1, +1, -1, -1] [+1, -1, +1] [-1, -1, +1, +1] [+1, +1, -1] [-1, -1, -1, -1]

kagami
Download Presentation

Computation in neural networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computation in neural networks M. Meeter

  2. Calculating a function Perceptron learning problem Input Patterns Desired output [+1, +1, -1, -1] [+1, -1, +1] [-1, -1, +1, +1] [+1, +1, -1] [-1, -1, -1, -1] [-1, -1, +1, -1] [-1, -1, -1] [-1, +1, +1, -1] [-1, +1, +1] [+1, -1, +1, -1]

  3. Types of networks & functions • Attractor • Feedfwrd Hebbian • associative (Hebbian) • competitive • Feedfwrd error corr. • perceptron • backprop • completion, autoass. memory • association, assoc. memory • clustering • categorization, generalization • nonlinear, same

  4. Types of networks • Attractor • Feedfwrd Hebbian • associative (Hebbian) • competitive • Feedfwrd error corr. • perceptron • backprop • completion, autoass. memory • association, assoc. memory • clustering • categorization, generalization • nonlinear, same

  5. A Classification

  6. Generalization 76 128 ?

  7. Regression = generalization Univariate Linear Regression prediction of values

  8. Clustering

  9. Types of networks • Attractor • Feedfwrd Hebbian • associative (Hebbian) • competitive • Feedfwrd error corr. • perceptron • backprop • completion, autoass. memory • association, assoc. memory • clustering • categorization, generalization • nonlinear, same

  10. Classification - discrete Perceptron learning problem Prototypical Input Patterns Desired output [+1, +1, -1, -1] [+1, -1, +1] [-1, -1, +1, +1] [+1, +1, -1] [-1, -1, -1, -1] [-1, -1, +1, -1] [-1, -1, -1] [-1, +1, +1, -1] [-1, +1, +1] [+1, -1, +1, -1]

  11. Classification - discrete Perceptron learning problem Prototypical Input Patterns Desired output [+1, +1, -1, -1] [+1, -1, +1] [-1, -1, +1, +1] [+1, +1, -1] [-1, -1, -1, -1] [-1, -1, +1, -1] [-1, -1, -1] [-1, +1, +1, -1] [-1, +1, +1] [+1, -1, +1, -1]

  12. Xi X1 X2 Xn Classification in Perceptron  wji threshold

  13. Effe tussendoor… • Bij perceptron etc.: net input knoop>0 dan activatie 0 • Niet altijd gewenst: daarom heeft knoop in continue vormen perceptron / backprop een ‘bias’, een activatie die altijd bij input opgeteld wordt • Effect: verschuiven threshold

  14. - Threshold Input= + Input= mixture Threshold Classification in 2 dimensions

  15. Discriminant Analysis Find center of two categories, draw line in between, then one diagonal in middle = discrimination line Produces exact same result

  16. Generalization = Regression Univariate Linear Regression prediction of values

  17. Activation function  Xi (·) X1 X2 v =  xi*wji (v) = av + b Xn   Perceptron with linear activation rule y wji j Change weights with  rule, minimizing Se2 Bias

  18. X 1 X 2 X i X n Multivariate Multiple Linear Regression Multivariate = multiple independent variables X =multiple inputs y 1 1 y 2 2 Multiple = multiple dependent variables Y =multiple outputs Y2 X Y1

  19. linear nonlinear y y x x Linear vs. nonlinear regression • Here: quadratic • General: wrinkle-fitting

  20. X X Multi-Layer Perceptron å = v x * w i ji i  y1 y2 • Fit any function: “Universal approximators” X= [x1, x2, .., xi, .., xn]

  21. Too complex model y x Bad Extremely bad Overfitting y Too simple model x

  22. Clustering Competitive learning: • next week • ART

  23. Conclusions • Neural networks similar to statistical analyses • Perceptron -> categorization / generalization • Backprop -> same but nonlinear • Competitive l. -> clustering • But… • Whole data set vs. one pattern at a time

  24. Feature reduction with PCA

  25. ? ? Feature extraction with PCA Unsupervised Learning Hebbian Learning

More Related