1 / 34

Magnetic Neutron Diffraction the basic formulas

Magnetic Neutron Diffraction the basic formulas. A.Daoud-aladine, (ISIS-RAL). What’s a magnetic structure? Why study magnetic order? Example : Manganites The magnetic structure factor Using the k-vector Formalism (as required by the Fullprof input)

kagami
Download Presentation

Magnetic Neutron Diffraction the basic formulas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Magnetic Neutron Diffractionthe basic formulas A.Daoud-aladine, (ISIS-RAL)

  2. What’s a magnetic structure? Why study magnetic order?Example : Manganites The magnetic structure factorUsing thek-vector Formalism(as required by the Fullprof input) (Alternative to Shubnikov symmetry, which are TABULATED crystallographic magnetic space groups : this is however restricted to commensurate structures) Pitfalls

  3. core What’s a magnetic structure? (atomic) magnetic moments (m) arise from quantum effects in atoms/ions with unpaired electrons Ni2+ Intra-atomic electron correlation Hund’s rule(maximum total S) + Spin-orbit + CEF « Classical description» « Quantum description» m = gJJ (J=L+S 4f-rare earths) m = gSS (3d-transition metals)

  4. What’s a magnetic structure? Magnet: crystal containing magnetic atoms kT >> Jij, Jij paramagnetic (disordered) state Temperature (entropy) overcomes magnetic energy: Entropy essentially dominated by local magnetic moment fluctuations

  5. Jij What’s a magnetic structure? Magnet: crystal contaning magnetic atoms kT < Jij, Exemple here: Jij>0 Antiferromagnetic coupling (AF) Magnetic energy overcomes the entropy :  Quasi-static configuration of magnetic moment with small fluctuations that are made cooperative by the magnetic exchange (spin waves excitations )

  6. Why study magnetic order? • Fundamental properties of condensed matter. Exchange • interactions related to the electronic structure. • The first (necessary) step before determining the exchange interactions (generally, with inelastic neutron scattering) • Permanent magnet industry. Chemical substitutions • controlling single ion anisotropy, strength of effective • interactions, canting angles, etc: NdFeB materials, • SmCo5, hexaferrites, spinel ferrites. • Spin electronics, thin films and mutilayers

  7. Dipolar interaction term with one electron core core Total Si si => vector scattering amplitude for one atom Magnetic scattering of a single atom From Introduction to the Theory of Thermal Neutron Scattering, G SQUIRES – Cambridge University Press (1978) Q= kF - kI r R kI=2/uI kF=2/uF ri

  8. Example: RMnO3 manganites LaMnO3 TN=150K Ideal cubic Perovskite TbMnO3 TN=41K O Mn Pnma La/Tb Site A m [010]O [001]C [101]O [010]C n Mn-O-Mn m n a a

  9. Example: RMnO3 manganites LaMnO3 TN=150K AF Commensurate structure T. Goto, et al. Phys. Rev. Lett. 92, 257201 (2004)

  10. LaMnO3 : 50K and 150 K Example: RMnO3 manganites LaMnO3 TN=150K AF Commensurate structure

  11. O Jahn-Teller Distorsion dx2-y2 dxy dz2 dyz dxz Example: RMnO3 manganites LaMnO3 TN=150K Electronic structure of Mn3+ (x=0) Hund JH Crystal field x2 eg 3d4 AF S=3/2 Commensurate structure t2g (e- localized) • scattering amplitude for one atom, tabulated f(Q)

  12. Example: RMnO3 manganites LaMnO3 TN=150K AF Commensurate structure T. Goto, et al. Phys. Rev. Lett. 92, 257201 (2004)

  13. Example: RMnO3 manganites LaMnO3 TN=150K TbMnO3 TN2<T<TN1=41K Sinusoidal T<TN2=23K Cycloid AF Commensurate structure Incommensurate structures

  14. What’s a magnetic structure? Why study magnetic order?Example : Manganites The magnetic structure factor Pitfalls

  15. core core Magnetic scattering of a single atom From Introduction to the Theory of Thermal Neutron Scattering, G SQUIRES – Cambridge University Press (1978) Q= kF - kI r R kI=2/uI kF=2/uF ri Dipolar interaction term with one electron Total Si si => vector scattering amplitude for one atom

  16. Magnetic scattering from a magnet Magnetisation density: M(r)=MS(r)+ML(r) kI=2/uI kF=2/uF n Q= kF - kI • Magnetic interaction vector for a crystal • Magnetic structure factor => vector scattering amplitude for one atom In the magnetic cell

  17. Only the perpendicular component of M to Q=2h contributes to scattering Magnetic structure factorsand interaction vectors Q=Q e M(Q) q q M(Q)xQ M(Q) • Magnetic interaction vector for a crystal • Magnetic structure factor => vector scattering amplitude for one atom In the magnetic cell

  18. Q=(hmagkmaglmag) b1mag a1mag = 2a1 a2mag = a2 a3mag = a3 b1mag = b1/2 Propagation vectors : Structure factor in crystal cell Reciprocal k-space Crystal+AF mag structure b2 k b1 R(101) a3 a1mag Nuclear reflections a2 a1 H=h.b1+k. b2+l. b3

  19. Propagation vectors : Structure factor in crystal cell In the magnetic cell Crystal+AF mag structure Q=(hmagkmaglmag) Reciprocal space Atom 1 Real space Atom 2 R(101) a3 (1) (2) a1mag a2 a1 the AF arrangement =>… hmag necessarily odd (type, 2h+1)

  20. Propagation vectors and Structure factor in crystal cell Reciprocal space Crystal+AF mag structure b2 Q b1 R(101) b1mag a3 (1) (2) a1mag Nuclear reflections a2 a1 Magnetic reflections a1mag = 2a1 a2mag = a2 a3mag = a3 Q=hmag.b1mag+k. b2+l. b3 b1mag = b1/2 the AF arrangement =>… hmag necessarily odd (type, 2h+1)

  21. k=(½00) H « Propagation vector » Q= H+ k Propagation vectors and Structure factor in crystal cell Reciprocal space Crystal+AF mag structure b2 Q b1 R(101) b1mag a3 (1) (2) a1mag Nuclear reflections a2 a1 Magnetic reflections a1mag = 2a1 a2mag = a2 a3mag = a3 Q=(2h+1).b1/2+k. b2+l. b3 b1mag = b1/2 Q=h.b1+k. b2+l.b3 + b1/2

  22. Propagation vectors and Structure factor in crystal cell Reciprocal space Crystal+AF mag structure k=(½00) b2 Q H b1 R(101) b1mag a3 (1) (2) a1mag Nuclear reflections a2 a1 a1 Magnetic reflections m[n]i = Si. (-1)n1 Q=(2h+1).b1/2+k. b2+l. b3 Q=h.b1+k. b2+l.b3 + b1/2 because k.Rn=n1/2 Q= H+ k

  23. Propagation vectors and Structure factor in crystal cell Reciprocal space Crystal+AF mag structure k=(½00) b2 Q H b1 R(101) b1mag a3 (1) (2) a1mag a2 a1 m[n]i = Si. (-1)n1 because k.Rn=n1/2

  24. Propagation vectors and Structure factor in crystal cell : case 1 Reciprocal space Magnetic structure k=(½00) -k b2 Q In our example (AF): - k equivalent to –k (2k is a reciprocal lattice vector, or k at the border of the brillouin zone) - Only k sufficient to index all the magnetic reflections, - And Skj must be real H b1 b1mag

  25. Propagation vectors and Structure factor in crystal cell : case 2 Reciprocal space Magnetic structure k b2 -k H In general k NOT equivalent to –k, so a set of {k}=k,-k is needed - Skj are complex vectors b1 - necessary condition for real mnj : Formalism Required to describe Incommensurate structures

  26. Magnetic scattering and structure factors For non-polarised neutrons Nuclear Phase: Magnetic Phase: Scattering vector h=H Arrangement of the moments Atomic positions Structural model Structure Factor/ Intensity

  27. What’s a magnetic structure? Why study magnetic order?Example : Manganites The magnetic structure factor Pitfalls

  28. Pitfalls : k=(000) Reciprocal space Magnetic structure k=(000) b2 When k=(000) (primitive P): - mni=Skj whatever n: this only means that the cell of the the magnetic structure is the same as that of the nuclear structure (not necessarily ferromagnetic, if more than 2 atoms/cell) b1 Nuclear reflections Magnetic reflections h= H

  29. LaMnO3 : 50K and 150 K Pitfalls : k=(000) LaMnO3 TN=150K Orthorhombic Pnma mni=Skj k=(000) Sk1= -Sk2= -Sk3= Sk4, all reals vectors 3 2 4 1 AF Commensurate AF structure

  30. Pitfalls : Centred cells Reciprocal space Magnetic structure (110) (-110) b2 b1p b2p I/F-centred lattice (2D): b1 a2 a2p a1p a1 Nuclear reflections

  31. Pitfalls : Centred cells Reciprocal space Magnetic structure (110) (-110) b2 b1p b2p I/F-centred lattice (2D): b1 a2 a2p a1p k=(000) a1 Nuclear reflections Magnetic reflections h= H

  32. k=(100) kp=(½½0) Magnetic reflections h= H+ k Pitfalls : Centred cells Reciprocal space Magnetic structure (110) (-110) b2 b1p b2p AF order on a centred lattice b1 a2 a2p a1p a1 Nuclear reflections

  33. Pitfalls : Centred cells Reciprocal space Magnetic structure (110) (-110) b2 b1p b2p • I-centred lattice : • - k equivalent to –k • (2k is a reciprocal lattice vector) • This is because {Rn} contains type (½½½)… translations, • - k vectors, which can have integer components, have in fact non-integer components in the primitive cell b1 k=(100) kp=(½½0) Nuclear reflections Magnetic reflections h= H+ k

  34. Magnetic scattering and structure factors For non-polarised neutrons Nuclear Phase: Magnetic Phase: Scattering vector h=H Arrangement of the moments Atomic positions Structural model Structure Factor/ Intensity

More Related