1 / 37

Bayesian AVO Inversion and Application to a Case Study

Bayesian AVO Inversion and Application to a Case Study. P ål Dahle * , Ragnar Hauge, and Od d Kolbjørnsen Norwegian Computing Center Nam H. Pham Statoil. Contents. Objective Constrain high resolution 3D reservoirs by seismic AVO data Method

kai-clayton
Download Presentation

Bayesian AVO Inversion and Application to a Case Study

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bayesian AVO Inversion and Application to a Case Study Pål Dahle*, Ragnar Hauge, and Odd Kolbjørnsen Norwegian Computing Center Nam H. Pham Statoil

  2. Contents Objective • Constrain high resolution 3D reservoirs by seismic AVO data Method • Bayesian inversion, merging of geophysical and geological models Contribution • Fast algorithm • Spatial coupling • Uncertainty assessment Vp Vs 

  3. Outline 1) Geophysical model Bayesian inversion 2) Earth model 3) Combining models Combined 4) Summary Geology 5) Case study Rapid spatially coupled AVO inversion Probability Seismic Reservoir

  4. Convolutional model: d(x,t,) = wtcpp(x,t,) + (x,t,) *  d(x,t,) AVO-trace, surface point x, “offset” w (t)Seismic wavelet, angle dependentcpp(x,t,) Seismic reflectivity(x,t,) Error term  w (t) cpp(x,t,) d(x,t,)  Geophysical Model

  5. Weak contrast approximation (continuous version): Convolutional model: m(x,t) = [ lnVp(x,t), lnVs(x,t), ln(x,t) ] d(x,t,) = wtcpp(x,t,) + (x,t,) * cpp(x,t,) = aVp() lnVp(x,t)+ aVs() lnVs(x,t) + a() ln(x,t)     t t t Reflectivity Matrix formulation:d = Gm + 

  6. m(x,t) = [ lnVp(x,t), lnVs(x,t), ln(x,t) ] m ~ N( m,m)  ~ N(0,e) d~ N( md,d) Assuming Normal Distributions Matrix formulation:d = Gm + 

  7. m= CovmH (x1,t1), mH (x2,t2) Earth Model Vp Isotropic, inhomogeneous earth: m(x,t) = mBG(x,t)+mH(x,t) Vs m ~ N(mBG,m)

  8. CovmH (x1,t1), mH (x2,t2) =0(t1 - t2 ) (x1 - x2 ) ln lnVs ln 7.6 7.80 7.80 7.4 7.75 7.75 7.2 7.70 7.70 7.0 7.8 7.9 8.0 7.8 7.9 8.0 7.2 7.4 7.0 lnVp lnVp lnVs m: Inter-parameter Dependence

  9. CovmH (x1,t1), mH (x2,t2) =0(t1 - t2 ) (x1 - x2 ) m: Vertical Dependence Vp 2100 1 2200 0 -20 0 20 2300 2000 2500 3000

  10. CovmH (x1,t1), mH (x2,t2) =0(t1 - t2 ) (x1 - x2 ) 1350 1350 1 1300 1250 1250 0 40 -40 0 0 -40 40 1500 1600 1700 m: Lateral Dependence Vp

  11. m ~ N( m,m)  ~ N(0,e) d~ N( md,d) m d ~ N( mm|d , m|d) Combining the Models

  12. mm|d = mBG+mG*(GmG* + e)-1(d - GmBG) m|d = m - mG*(GmG* + e)-1G m m,d m d The Posterior Distribution too much time ....

  13. m,d m d 3D FFT 3D inverse FFT m,d m d Solving in Frequency Space

  14. Summary • Bayesian inversion • Convolutional model,weak contrast • Spatial dependencies of earth parameters • Fast inversion • 100 million grid cells ~ 1 hour • More than inversion • Consistent merging of well logs • High resolution reservoirs

  15. Smørbukk Case Study

  16. The Smørbukk Case • 32 mill grid cells • 3 angles • 2.5 h

  17. Frequency Split • Background freq < 6Hz • Inversion 6Hz ≤ freq ≤ 40Hz • Simulation freq > 40Hz

  18. Background Modelling

  19. Background Model Vp6 Vs6 RHOB6

  20. Inversion Input Data • Background model: Vp, Vs, and Rho • Well data: TWT, DT, DTS, and Rho • Seismic Data • Wavelets

  21. Predicted AI From Inversion

  22. AI Prediction in Wells Well 1Well 2Well 3

  23. SI Prediction in Wells Well 1Well 2Well 3

  24. Density Prediction in Wells Well 1Well 2Well 3

  25. AI Cross Sections: Horisontal

  26. AI Background

  27. AI Prediction

  28. AI Prediction Kriged to Wells

  29. AI Conditional Simulation1

  30. AI Conditional Simulation 2

  31. AI Cross Sections: Vertical

  32. AI Background Well

  33. AI Prediction Well

  34. AI Prediction Conditioned to Wells Well well

  35. AI Conditional Simulation 1 Well

  36. AI Conditional Simulation 2 Well

  37. Case Study Conclusions • Good match for AI used for modelling of • Facies • Porosity

More Related