1 / 23

CS SOR: Polling models

CS SOR: Polling models. Vacation models Multi type branching processes Polling systems (cycle times, queue lengths, waiting times, conservation laws, service policies, visit orders) . Richard J. Boucherie department of Applied Mathematics University of Twente. Polling models.

kalb
Download Presentation

CS SOR: Polling models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS SOR: Polling models • Vacation models • Multi type branching processes • Polling systems (cycle times, queue lengths, waiting times, conservation laws, service policies, visit orders) Richard J. Boucheriedepartment of Applied Mathematics University of Twente

  2. Polling models • N infinite buffer queues, Q1, …, QN • Service time distribution at queue j: Bj(.), mean βj, LST βj(.) • Poisson arrivals to queue j at rate λj • Single server in cyclic order • Switch over times: random variable Sj, mean σ j, LST σj(.) • This week:vacation queues • Next week…..Multi-type branching processes (Resing) • In two weeks: polling • Then: 3 presentations by you

  3. Polling modelsToday: Vacation models • S.C. Borst. Polling Systems, CWI: Tract, chapters 1 – 3. • S.W. Fuhrmann, R.B. Cooper. Operations Research, Sep/Oct 1985, Vol. 33 Issue 5, p1117-1129 • J.A.C. Resing. Polling systems and multitype branching processes, Queueing Systems, 13, p 409 – 426 • I. Adan: Queueing Systems, lecture notes • M/G/1 queue, PK formula • M/G/1 queue with vacations • M/G/1 queue with Generalized vacations • Polling model

  4. M/G/1 queue • Poisson arrival process rate λ, single server, General service times, mean 1/μ=E(B) • Service time distribution FB(.), density fB(.) • state: pair (n,x), n=#customer, x= received service time • # customers left behind by k-th departing cust. • # customers in the system at time t • # customers seen by k-th arriving customer • PASTA & frequency argument:

  5. M/G/1 queue # arrivals during k-th service time Embedded Markov chain at departure epochs pr n arrivals during service

  6. M/G/1 queue • Equilibrium equations • Gen. functions, for z<1, • From equil. eq. • Hence

  7. M/G/1 queue • Furthermore • Pollaczek-Khintchine formulafor queue length • By analogy for sojourn time • And for Waiting time

  8. Polling modelsToday: Vacation models • S.C. Borst. Polling Systems, CWI: Tract, chapters 1 – 3. • S.W. Fuhrmann, R.B. Cooper. Operations Research, Sep/Oct 1985, Vol. 33 Issue 5, p1117-1129 • J.A.C. Resing. Polling systems and multitype branching processes, Queueing Systems, 13, p 409 – 426 • I. Adan: Queueing Systems, lecture notes • M/G/1 queue, PK formula • M/G/1 queue with vacations • M/G/1 queue with Generalized vacations • Polling model

  9. M/G/1 queue with server vacations • Consider M/G/1 queue • Server takes a vacation (general distribution) when the system becomes idle • Upon return from vacation, if system idle new vacationotherwise serve until system idle: exhaustive service • No preemption • Queue length? Sojourn time? • Mild conditions: in distribution N=NM/Q/1 + NIV=VM/Q/1 + VI • NM/Q/1 number at arbitrary moment in corresp M/G/1NI number at arbitrary moment in non-serving intervalIndependent r.v.

  10. Ancestral line • I0 group of customers • I1 set of customers who arrive while members of I0 are being served: first generation offspring of I0 • Ik, k>1 set of customers who arrive while members of Ik-1 are being served: k-th generation offspring of I0 • ancestral line of I0 • For us: I0 single customer, or set of customers arriving during some vacation • Vacation customer: arrive while server is on vacation • To each customer, C, corresponds a unique vacation customer, A, such that C is in ancestral line of A: A is ancestor of C.

  11. Exhaustive service • No preemption: # cust under FIFO = # under LIFO • Assume LIFO • Tag arbitrary customer C upon departurelet A be its ancestor • present at departure of C are all vacation customers that arrived before A,and all remaining customers in ancestral line of A • A has started busy period (that ends with dept of A), C is arbitrary cust in this busy period, this busy period equivalent to standard busy period, thus number of customers in ancestral line of A left behind by C = number of customers left behind in standard M/G/1 queue.

  12. Exhaustive service • present at departure of C are all vacation customers that arrived before A,and all remaining customers in ancestral line of A • C is arbitrary customer, all vacation customers are iid, therefore customer C corresponds to arbitrarily selected vacation customer. Thus : number of vacation customers left behind = number of customers at arbitrary epoch during vacation. • Theorem: Queue length decomposition N=NM/G/1 + NIwhere equality is in distribution, and N:= queue length at arbitrary epochNM/G/1 := queue length at arbitrary epoch in corresponding M/G/1NI := queue length at arbitrary epoch in vacation periodNM/G/1 and NI are independent r.v.

  13. Exhaustive service • NI distrib as # cust seen by arbitr arrival in vacation period(PASTA) • Nend,k # customers end k-th vac period, Nend generic rv. • Lemma: • Proof

  14. Exhaustive service • Alternative formulation: • ψ(.) = p.g.f. stat distrib # cust random dept cust leaves behind or finds or at arbitrary time • π(.) = p.g.f. idem in corresp M/G/1 queue • α(.) = p.g.f. # arrivals during vacation period = Vac(λ-λz) • π(z)=

  15. Polling modelsToday: Vacation models • S.C. Borst. Polling Systems, CWI: Tract, chapters 1 – 3. • S.W. Fuhrmann, R.B. Cooper. Operations Research, Sep/Oct 1985, Vol. 33 Issue 5, p1117-1129 • J.A.C. Resing. Polling systems and multitype branching processes, Queueing Systems, 13, p 409 – 426 • I. Adan: Queueing Systems, lecture notes • M/G/1 queue, PK formula • M/G/1 queue with vacations • M/G/1 queue with Generalized vacations • Polling model

  16. Generalized vacations: assumptions • Server can take vacation at any time: vacation = server unavailable • Service time independent of sequence of vacation periods preceding that service time. • Order of service independent of service times. • Service non-preemptive • Rules that govern when server begins and ends vacations do not anticipate future jumps of the arrival process.

  17. Generalized vacations: examples • Standard vacation model: vacation upon idling • N-policy: server waits until exactly N customers present before starting service, then work continues until system empty • M/G/1 with gated vacations: when server returns from vacation, he accepts only those customers waiting upon return, service of other customers deferred to next visit • Limited service: serve at most k customers • Polling model • Priority system

  18. Generalized vacations • Decomposition property holds for any vacation system under assumptions stated. • Theorem: Consider a random (tagged) customer C. Let A the ancestor, I0 the set of vacation customers who arrived during the same vacation to which A arrived. Let I the ancestral line of I0, and let X the number of members of I present in system when C departs. X has p.g.f. • Proof:

  19. Generalized vacations • Assume that the number of customers that arrive during a vacation is independent of the number of customers present in the system when vacation began. • Theorem: Under this assumption • Proof: LIFO, p.g.f. of number of customers already present at beginning of vacation. Independence yields product.

  20. Generalised vacations • Theorem: Queue length decomposition N=NM/G/1 + NIwhere equality is in distribution, and N:= queue length at arbitrary epochNM/G/1 := queue length at arbitrary epoch in corresponding M/G/1NI := queue length at arbitrary epoch in vacation periodNM/G/1 and NI are independent r.v. • Theorem: Work decomposition V=VM/G/1 + VIwhere equality is in distribution, and V:= work at arbitrary epochVM/G/1 := work at arbitrary epoch in corresponding M/G/1VI := work at arbitrary epoch in vacation periodVM/G/1 and VI are independent r.v.

  21. Generalized vacations: Gated service • Gated service: recall:Defineis p.g.f. number of the k-th generation offspringfirst previous gated period, second previous gated period

  22. Polling modelsToday: Vacation models • S.C. Borst. Polling Systems, CWI: Tract, chapters 1 – 3. • S.W. Fuhrmann, R.B. Cooper. Operations Research, Sep/Oct 1985, Vol. 33 Issue 5, p1117-1129 • J.A.C. Resing. Polling systems and multitype branching processes, Queueing Systems, 13, p 409 – 426 • I. Adan: Queueing Systems, lecture notes • M/G/1 queue, PK formula • M/G/1 queue with vacations • M/G/1 queue with Generalized vacations • Polling model

  23. Polling models • N infinite buffer queues, Q1, …, QN • Service time distribution at queue j: Bj(.), mean βj, LST βj(.) • Poisson arrivals to queue j at rate λj • Single server in cyclic order • Switch over times: random variable Sj, mean σ j, LST σj(.) • Next week….. • Multi-type branching processes • and polling (Resing)

More Related