1 / 32

K ±  ±  0  0

K ±  ±  0  0. Measuring Branching Ratio and Dalitz plot parameters. A. Ventura E. Gorini M. Primavera. B ranching Ratio World data.  ’  K ±  ±  0  0. PDG ( units 10 –2 ). 1.73±0.04 (fit) 1.77±0.07 (average). Best experiment is 3.5% error,

kaleb
Download Presentation

K ±  ±  0  0

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. K±±00 Measuring Branching Ratio and Dalitz plot parameters A. Ventura E. Gorini M. Primavera

  2. Branching Ratio World data ’ K±±00 PDG(units 10–2) 1.73±0.04 (fit) 1.77±0.07 (average) Best experiment is 3.5% error, and bases on only 1307 events: CHIANG 72 (1.84±0.06)10–2 K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  3. Present statistics analized at KLOE • Data: 6.33 pb–1 (December 2001) • MC: 1.8 106all (~0.6 pb–1) • 7.0 105K–K+, K±±00,Kall (~13 pb–1) – DBV-12 default datarec version – MC samples include proper DC & EMC bckg simulations K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  4. Filter algorithm (I)Preliminary requirements • Cosmic Veto  (DC+EMC) Trigger • Any of the 5 EvCl algorithms • K± track • a unique 2-tracks vertex in DC involving the K± • Distance between the two tracks’ first/last hit < 50 cm • Angle at vertex between the two tracks > 2°* * Redundant cut with new retracking K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  5. Filter algorithm (II)Further requirements • 4 “ontime” non-associated clusters with Ei>15 MeV coming from thecharged vertex:|ti–tj–(Li–Lj)/c|<3t(Ei,Ej) i,j=1,..,4 • Best pairing of the quartet of clusters: 80 MeV < m12 , m34 < 190 MeV ( 3m cut ) • 460 MeV < m < 530 MeV ( 3m cut ) • Charged product track momentum: |pdau| < 135 MeV in K± frame all contamination ~0.5% (MC) K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  6. Photons from 0s in ’on MC and Data Energy distribution: Ei [20,180]MeV MC gen MC rec  00 K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  7. Tagging strategies K±±0 • Daughter momentum: 199 MeV < |pdau| < 211 MeV in K frame • Missing mass at K vertex: 122 MeV < mm < 148 MeV • 2 ontime non-associated clusters: 90 MeV < m < 180 MeV all contamination ~0.35% (MC) K± ± • Daughter momentum: 226 MeV < |pdau| < 245 MeV in K frame • Missing mass at K vertex: |mm|< 5 MeV all contamination ~0.3% (MC) K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  8. BR measurement method [N’]tag Ntag 1 ’ 1 [1–BR(0)]2 BR(K±00) = BR(0)=(98.80±0.03)%,tag = 0,  ’ = K vtx4onTpair M pdau • ’does not depend onFILFO ,EvCl ,tag • ’independence from trigto be tested K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  9. Evaluating efficiencies on MC and on Data • All the cuts applied have been separately studied on proper Samplesof Normalization (SoNs) in order to evaluate efficiencies directly from data. • Equivalent MC samples have been used just to control and reduce contamination in all SoNs. • Each  is meant to be convoluted with the corresponding KLOE acceptance and to be averaged over ’ kinematics K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  10. Evaluating efficiencies: K SoN#1 : tag+4 • A K° or a K on one side, as defined for tagging • 4 non-tag neutral clusters with E>15MeV (“”) : • 20 MeV < Ei < 180 MeV • 125 MeV < Ej+Ek< 195 MeV • (j=min and k=max) or (j=2nd and k=3rd) • 1 cluster >110 MeV • 2 clusters <60 MeV • max(|tj–tk|) < 9 ns (j,k=1,..,4) 98% K°°(MC) ;~2200 events/pb–1 on data K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  11. Evaluating efficiencies: K Kaon tracks in tag+4 K MC Data MC Data  |pFH| # of “” cot  Track’s length Track’s radius at First Hit • New tracking algorithms still to be used on analysis K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  12. Evaluating efficiencies: vtx SoN#2 : tag+4+K • A tag+4 subsample with the other K reconstructed vtx = v TTcos|v • v : finding a 2-tracks vertex • TT: distance between tracks < 50 cm • cos: angle between tracks > 2° • |v: no other decay vertices for K K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  13. Evaluating efficiencies: vtxvs # of “” MC Data v TT cos |v K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  14. Evaluating efficiencies: 4onT A possible parametrization: 4onT = tw6 [1–Pwtw4]N • tw : finding 2 clusters (photons) coming from the same vertex (0) in a 3ttime window • Pw : physical probability for a “” not coming from a given 0 to be ontime with its 2 correct clusters (e.g.: accidentals, split clusters, TCA faults, …) • N : mean number of non-’ “”s in a generic ’ event K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  15. Evaluating efficiencies: tw SoN#3 : Kp+1 • (K track + dautrack) at a 2-trks vertex • 199 MeV < pdau< 211 MeV in K frame • Missing mass at vtx: 122 MeV<mmiss<148 MeV •  cluster 0 associated with dau track •  neutral cluster 1 : E1<(>)Emiss/2 ontime with 0 and such that: |E1–E1*|<35.7%/E1(GeV) , with E1*=m°2/2[Emiss– pmissc1] 1 2   0 99.7% cluster 1 from K°(MC) ; ~60000 events/pb–1 on data K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  16. Evaluating efficiencies: twin Kp+1 tw • tw : finding a cluster 2 such that: • E2>(<)Emiss/2 • 2ontime with 1 • 80 MeV<m12<190 MeV MC Data MC Data E tw as a function of the cluster 2 expected energy Cluster 2 not found (90.94±0.07)% on MC (86.11±0.04)% on Data tw = Distance between cluster 2 and the expected impinging point K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  17. Evaluating efficiencies: Pw SoN#4 : Kp+2 1 2 • A Kp+1 subsample in which cluster 2 has been found • Pwtw4: finding a “wrong” cluster W which is ontime with clusters 1 and 2 0 Pw W (2.16±0.07)% on MC (3.39±0.03)% on Data MC Data Pw = K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  18. Evaluating efficiencies: N The mean number of non-’ “”s in a ’ event (N) can be estimated • in tag+4 , • in tag+4+K , • in the final analysis sample itself • Nany possible “” observed in a ’ event apart the 4 ’ neutral clusters MC Data (1.27 ± 0.02)% on MC (1.531±0.008)% on Data N= N+4 K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  19. Evaluating efficiencies: pair SoN#5 : Kp+1+1 • A Kp sample in which both the 2 clusters have been separately found with the procedure as for kp+1 and are ontime. 1 2 pair = 2 0 •  : the 2 clusters in Kp+1+1 satisfy: 80 MeV<m12<190 MeV N MC Data (0.975±0.002)% on MC (0.941±0.001)% on Data E  = K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  20. Efficiencies: summary } K0tag ’ 0.203±0.014 0.096±0.004 K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  21. Estimation of statistical error on BR(’) • MC (~1.8·106 all events) N’ =2204 , [N’]°tag=169 , Ntag=49912 BR(’) = (1.71±0.16stat)% • Data (~6.33 pb-1, December 2001) N’ =20778 , [N’]°tag=726 , N°tag=421626 BR(’) = (1.83±0.09stat)% • ~ 115’|0tag events/pb-1 • 2001 data are enough for BR(’)below0.8stat% • Systematics to be tested at % level K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  22. Dalitz plot parameters World data X = (s1 – s2)/m2 Y = (s3 – s0)/m2 si = (PK – Pi)2 i = 1,2,3  s0 = isi/3 = (mK2 + m2 +2m°2)/3 F(X,Y;g,h,k) = 1+gY+hY2+kX2 LINEAR COEFFICIENTg 0.652±0.031(average) QUADRATIC COEFFICIENTh 0.057±0.018(average) ASYMMETRY (g+- g-) / (g++ g-) NEVER MEASURED QUADRATIC COEFFICIENTk 0.0197±0.0045±0.0029(BATUSOV 98) K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  23. Kinematical fit (for Dalitz plot only) • Based on 4-momentum conservation, m’s and s0 Clusters energy resolutions (MC)  m m K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  24. X and Y resolutions (MC) X=(3390)10-3 Y=(2051)10-3 X[-2.39,2.39] Y[-1.39,1.31] • Dalitz plot floored by 10x20 bins in [-3,3]x[-2,2] K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  25. Dalitz plots and efficiencies (MC) GENerated REConstructed Y Y X X (X,Y) # REC # GEN (X,Y) = (X,Y)dX (from data) (X,Y)dY (Y)is also evaluable from data (Y=.033) (X,Y)dX K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  26. Extraction of Dalitz plot parameters F F(X,Y;g,h,k) = 1+gY+hY2+kX2 • 2= bins[(Fexp – Ftheo)/Fexp]2 minimized with g, h, k free • A0(g,h,k) = F(X,Y;g,h,k)dxdy normalization applied • Maximum Likelihood method under study 6.33 pb-1  ~15500 K°° (MCnormalized) Y X VERY PRELIMINARY K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  27. Event selection and errors estimation • ~3330 K00 / pb–1 for BR(before kine fit) • ~2500 K00 / pb–1 for g,h,k (after kine fit) • All 2001 data should yield ~0.5stat% on Dalitz plot • parameters and asymmetries K±±00measuring branching ratio and Dalitz plot parameters A. Ventura – KLOE Otranto 2002

  28. Study on K±00e±e (Ke4) Branching Ratio (2.1 ± 0.4 ) 10–5(PDG fit) (2.54±0.89) 10–5 (BARMIN 88, 10 evts) Highest statistics in: (00e±e)/(0e±e) = (4.2±1.0)10–4 (BOLOTOV 86, 25 evts) Monte Carlo samples used: • signal: ~105K–K+, K±00e±, Kall (~2 fb–1) • 1st bckg: 3.0 106K–K+, K±±00,Kall (~60 pb–1) • 2nd bckg: 1.5106K–K+, K±0e±,Kall (~10 pb–1) A. Ventura – KLOE Otranto 2002 Study on K±00e±e

  29. Ke4 Filter algorithm • All cuts as in K00, except for: • 460 MeV < m < 530 MeV • |pdau|<135 MeV in K frame • K°°fit unsuccessful •  cluster associated to charged product’s track • 2based on 0 missing mass, E conservation (in  mass hypothesis), charged product 1, charged product t.o.f. compatible with e (not  or ): 2 < 5(MC tuned) Ke4 K°° A. Ventura – KLOE Otranto 2002 Study on K±00e±e

  30. Background subtraction (MC) • Contamination due to K±±00: (5.9 ±3.1)% • Contamination due to K±0e±: < 10% • Possible contamination from KL+–0 A. Ventura – KLOE Otranto 2002 Study on K±00e±e

  31. Selection Efficiency on MCand events collection on data • 1515 selected Ke4 events of 102600 MC generated  MC1.48%  ~0.9 Ke4/pb–1 are expected on data • Only2 Ke4 havebeen found in 6.33 pb–1 MC rec Data m m me me In(00e±e)/(±00) many systematics cancel out A. Ventura – KLOE Otranto 2002 Study on K±00e±e

  32. Conclusions and outlook • K 00 , BR Filter and data-extracted efficiencies already tested Trigger effects and systematic errors to be evaluated tag, EvCl, trig corrections to be studied • K 00 , Dalitz Plots parameters MC differential efficiency used for fit to be corrected Maximum Likelihood Method under study • K 00e , BR All 2001 data statistics to be analized Data-extracted efficiencies to correct MC predictions K±±00 and K±00e±e A. Ventura – KLOE Otranto 2002

More Related