1 / 40

Atomic Physics with VUV-FEL Radiation

I. SASE FEL Radiation (Self Amplification of Spontaneous Emission Free Electron Laser) Unique Light Sources VUV-FEL User Facilities. II. Multi-Photon Processes in Atoms & Molecules Interactions with Molecular Ions Spectroscopy & Ionisation of Ions.

kali
Download Presentation

Atomic Physics with VUV-FEL Radiation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. I. • SASE FEL Radiation (Self Amplification of Spontaneous Emission Free Electron Laser) • Unique Light Sources • VUV-FEL User Facilities II. • Multi-Photon Processes in Atoms & Molecules • Interactions with Molecular Ions • Spectroscopy & Ionisation of Ions Atomic Physics with VUV-FEL Radiation R. Moshammer MPIK-Heidelberg

  2. From Synchrotron Radiation to FEL-Light bunch of Ne electrons Undulator Synchrotron-Radiation Power  Ne

  3. From Synchrotron Radiation to FEL-Light bunch of Ne electrons Undulator Synchrotron-Radiation Power  Ne

  4. FEL-Radiation From Synchrotron Radiation to FEL-Light bunch of Ne electrons Undulator Power  Ne2 Self Amplified Spontaneous Emission (SASE)

  5. measured Sept. 2001 From Synchrotron Radiation to FEL-Light Gain in Quality & Power: 5-8 Orders of Magnitudes

  6. proposed FEL’s High-Power Laser versus FEL

  7. Non-Linear Processes in Atoms (Molecules) • Atomic Reactions with Small Cross-Sections Unique Light Sources Full coherence: ....... Dl/l 10-4 ... 10-8 Photon energies: ..... 10 eV to 10 keV Pulse width : ......... DT < 100 fs Rep. Rate : ............. up to 70 kHz Photons / Pulse : ..... 1012 Peak-Power : .......... MW to GW Intensities: .............. I > 1016 W/cm2

  8. VUV-FEL User Facilities Proposed Facilities BESSY: Eg < 1 keV SLAC : Eg < 8 keV TESLA : Eg < 14 keV Daresbury, Spring8, ........... Under construction TESLA Test Facility (TTF at DESY Hamburg) Start of user experiments in 2004 Eg < 200 eV

  9. Hamburg: TESLA Test Facility (TTF)

  10. Atomic Physics(Approved TTF - Experiments) • Multi-Photon Processes in Atoms & Molecules • Interactions with Molecular Ions • Spectroscopy & Ionisation of Ions Universität Frankfurt: R. Dörner, L. Schmidt, Th. Weber Fritz-Haber Institut Berlin: U.Becker Universität Hamburg: B. Sonntag Max-Planck-Institut Heidelberg: R. Moshammer, A. Dorn, D. Fischer, C.D. Schröter, J. Ullrich Max-Planck-Institut Heidelberg: H.B. Pederson, A. Wolf, D. Schwalm, J. Ullrich Weizmann Institute Rehovot: D. Zajfmann Max-Planck-Institut Heidelberg: J.R. Crespo,J. Braun,J. Bruhns, A. Dorn, R. Moshammer, C.D. Schröter, J. Ullrich Fudan University Shanghai Y. Zou LLNL Livermore P. Beiersdorfer

  11. Atomic Physics • Multi-Photon Processes in Atoms & Molecules • Interactions with Molecular Ions • Spectroscopy & Ionisation of Ions

  12. Atomic Physics • Multi-Photon Processes in Atoms & Molecules • Interactions with Molecular Ions • Spectroscopy & Ionisation of Ions

  13. Reaction-Microscope Drift Detector position-sensitive, multi-hit Helmholtz coils Spectrometer: Ion-electron coincidence meV ion energy resolution meV electron resolution El. field Supersonic gas jet Atoms, Molecules FEL Experimental Approach

  14. Experimental Approach Ion-detector Laser beam Gas-jet Electron-detector • Ultra high vacuum : p < 10-11 mbar • Ultra cold gas-jet : T < 1 Kelvin • Multi-hit detectors :  = 12 cm, Dt ~ 10 ns

  15. Single Photon Many Photons Few Photons hn << Ip FEL hn > Ip High Intensity Lasers I = 1015 W/cm2 Synchrotron-Radiation Ionisation of Atoms From Single Photons to Many Photons

  16. From Single Photons to Many Photons Few Photons ? e e Electron-Energy Ee Electron-Energy Ee Single Photon Many Photons Dörner (1997) Tunneling 1015 W/cm2

  17. From Single to Double Ionization e e -10 -5 5 10 0 P|| /a.u. Single Photon Many Photons Dörner et al. (2001)

  18. From Single to Double Ionization e e e1 e1 e2 e2 Single Photon Many Photons ! many open questions ! ! well understood !

  19. Experiment Theory (Goreslavski et al.) P|| (e2) [a.u.] e- momentum P|| (e1) [a.u.] Exp.: MBI-Berlin, MPI-Heidelberg, Frankfurt, Marburg...... Theory: Becker, Faisal, Taylor, Goreslavski..... Problems: • too many photons • classical field  ponderomotive motion

  20. possible Mechanisms: Dt + + 1 3 2 “Few” Photons: FEL - Radiation Helium ponderomotive potential Up I/w2 0 e.g. Eg= 50 eV

  21. + + energy [eV] -24 Dt -54 Helium -79 1 3 3 3 3 2 2 2 1 1 electron energy

  22. 1 hn Multi-Photon Double Ionization 2 hn momentum electron 1 [a.u.] 3 hn momentum electron 2 [a.u.] Perturbation theory Colgan & Pindzola PRL 88 (2002) Two-Photon Absorption at hn = 45 eV Numerical Solution of the Schrödinger-Equation Parker & Taylor J. Phys. B34 (2001) Absorption above threshold hn = 87 eV I = 2.1016 W/cm2

  23. More Processes • Multi-photon • single ionisation • Two-photon • innershell ionisation R. Hasbani, E. Cormier and H. Bachau J. Phys. B 33 (2000) 2101 S.A. Novikov and A.N. Hopersky J. Phys. B 33 (2000) 2287

  24. Atomic Physics • Multi-Photon Processes inAtoms & Molecules • Interactions with Molecular Ions • Spectroscopy & Ionisation of Ions

  25. Molecules: Fixed-in-Space Auger e e 10 eV O Shigemasa et al. PRL 74 (1995) Heiser & Becker et al. PRL 79 (1997) C Landers & Dörner PRL 87 (2001) “Molecules illuminated from within”

  26. hn2 probe hn2 hn1 pump Fixed-in-Space & Pump-Probe U. Becker, R. Dörner photo-electron angular distribution • “Snapshots” of the time-evolution • of intra-molecular potentials • “Movie” of the dissociation reaction fs time-scale for dissociation

  27. Atomic Physics • Multi-Photon Processes inAtoms & Molecules • Interactions with Molecular Ions • Spectroscopy & Ionisation of Ions

  28. VUV Photodissociation of Molecular Ions R A. Wolf, D. Zajfman, D. Schwalm Direct Predissociation Spontaneous radiative diss. Energy

  29. Experimental Approach A. Wolf, D. Zajfman, D. Schwalm Photon induced Dissociation Photodissociation Imaging electrostatic ion beam trap Hollow cathode ion source 5 kV Einzel lens VUV FEL Molecular ions e.g. CH+ Cold molecular ions Relaxation time (CH+) ~ 0.4 sec • Extracted ion bunch • extraction time ~ 50 ns • ~ 10 pulses per fill of trap • Kinetic energy release • Angular distributions • Cross sections

  30. CO CH+ HCO+ H2 H2+ H3+ Interstellar cloud chemistry Example: CH+ (production of oxygen-bearing molecules) e- C CO hn H2 e- from Hartquist, Williams Cambridge Univ. Pr. 1995

  31. CO HCO+ H2 H2+ H3+ Interstellar cloud chemistry Example: CH+ (production of oxygen-bearing molecules) loss mechanism photodissociation e- CH+ C CO hn Ex: Diffuse Cloud (ξ Ophiuchi): NObser(CH+) = 2.9·1013 cm-2 NModel(CH+) = 2.8·1010 cm-2 H2 e- from Hartquist, Williams Cambridge Univ. Pr. 1995

  32. H2O+ • Relevant Photon Energies: • Interstellar clouds: < 13.6 eV • Close to stars: < 50 eV H3O+ CHn+ estimated NHn+

  33. FEL -Radiation !! H2O+ • Relevant Photon Energies: • Interstellar clouds: < 13.6 eV • Close to stars: < 50 eV H3O+ CHn+ estimated NHn+

  34. Atomic Physics (Approved TTF - Experiments) • Multi-Photon Processes in Atoms & Molecules • Interactions with Molecular Ions • Spectroscopy & Ionisation of Ions

  35. 1 m Experimental Approach J. Crespo, P. Baiersdorfer, J. Ullrich FEL-apparatus: (under construction) FEL beam   

  36. Precision Spectroscopy on Ions I. Test of 1e - QED at Z ~ 1II. Few-Electron QEDIII. Determination of Nuclear Properties Magnetisation Distribution Magnetic Moment distribution Charge Radius Neutron DistributionIV. Electroweak Radiative Corrections V. Life Time Measurements FEL-Light: Dl/l < 10-4

  37. no data typical exp. accuracy: EE = 10-3-10-5 Lamb-shift in Li-like Ions BEVALAC (U89+) 280.59  0.10 eV FEL bandwidth: l/l 10-4 Expected accuracy: ll 10-6 QED contribution

  38. Photoionization of Ions • very few data (luminosity) • urgently needed (opacity project) • Multi-Photon Ionization! • Above Threshold Ionization! • Few photon – Few electrons! • High Harmonic Generation • Differential Data • differential data (merged beams) Photo ionization near threshold: Fe XV [2p63s2(1S)] R-matrix OP cross sections M. A. Bautista J. Phys. B 33 (2000) L419

  39. Extracted Beams from the EBIT combine FEL-radiation Future: Exciting LEIF with FEL‘s

More Related