360 likes | 548 Views
Investigations of Membrane Polypeptides by Solid-state NMR Spectroscopy: Structure, Dynamics, Aggregation and Topology of Supramolecular Complexes. Burkhard Bechinger Université Louis Pasteur, CNRS - UMR Chimie-physique moléculaire et spectroscopie Strasbourg, France. Solution NMR
E N D
Investigations of Membrane Polypeptides by Solid-state NMR Spectroscopy: Structure, Dynamics, Aggregation and Topology of Supramolecular Complexes Burkhard Bechinger Université Louis Pasteur, CNRS - UMR Chimie-physique moléculaire et spectroscopie Strasbourg, France
Solution NMR Requires fast and isotropic motional averaging < 120 kDa (TROSY) Solid-state NMR frozen, dry liquid crystalline membranes no physial size limitation Structure, orientation and dynamics NMR to study membrane proteins
Solution NMR Requires fast and isotropic motional averaging < 120 kDa (TROSY) Extended liquid crystalline bilayers are too big Solid-state NMR frozen, dry liquid crystalline membranes no physical size limitation Structure, orientation and dynamics NMR to study membrane proteins
Solid-state NMR provides information on … • chemical environment • distances • dihedral angles • orientations in space Structure, dynamics and topology
Chemical synthesis of peptides allows labelling at single sites
Bo DnQ ~ 3 cos2Q-1 2H 2H 2H Cb Ca Q The 2H quadrupolar splitting2H3-alanine Similar principles apply for many NMR interactions
2 angles 2 measurables Detailed helix alignment from combined 15N and 2H measurements
+ + + + + Tilt 95o, pitch 173o Unique solution from Energy Minimization hydrophobic hydrophilic +
Difference 2o KL14 Model Peptide in Oriented Phosphatidylcholine Bilayers Lipid 2H (kHz) 15N (ppm) POPC 6.0 74 DMPC 7.6 73 PC20:1 8.3 73 DOPC 10.8 74
Liquid crystalline membranes Motion around the membrane normal
Rotational averaging:Effect on 15N powder pattern line shape Static Rotation around s33 (helix long axis) Rotation around s22 Powder pattern provide orientational information
IP helix TM helix Loss of intensity during transition Freezing Rotational Diffusion
2H-NMR Equilibrium: Mono- / oligomer
2H NMR of ‘‘real‘‘ samplese.g. viral channel peptides Influenza M2 Vpu
2H spectral line shape and mosaic spread Tilt angle: 10o 40o 50o 700 Mosaic Spread 0.5 1 3 5 10 15
Q= 45.3o or 65.5o Mosaic spread = 1o Model amphipathic helix
Oriented 15N solid-state NMR:LAH4 pH-dependent molecular switch
Example: Domain of ICP47 • Herpes simplex virus • 87 residues early gene product (domain 2-34 active) • Inhibits transport by TAP of antigenic peptides to surface and thus presentation by MHC I lack of immunogenic response • Solution NMR: Helix (5-14)-loop-helix (22-31) in SDS micelles c/o Robert Tampé - Frankfurt
tilt 84o ‚Modelling‘ tilt 75o 15N solid-state NMR of ICP47(2-34) in oriented POPC Helix1 Loop Helix2
Mosaic spread 10-15o 2H solid-state NMR of ICP47(2-34) in oriented POPC
Christopher Aisenbrey Christina Sizun Bas Vogt Jesus Raya Gérard Nullans, ULP-INSERM Neurochimie Robert Tampé, Universität Frankfurt € ARC, ANRS, Vaincre la Mucoviscidose Region Alsace CNRS, Ministère, ACI Jeune Equipe Acknowledgements
Combine MAS and • oriented samples Methods to orient lipid bilayers
MAOSS at 10 kHz 31P NMR of oriented bilayers 10 kHz 565 Hz simulated
b=10o s=25o 3.7o mosaic 20 % powder MAOSS of hydrophobic model peptide in phospholipid bilayer 15N NMR 31P NMR
Summary • MAOSS with new sample set up low or fast spinning • spinning side band analysis tilt, mosaic spread and powder pattern contributions