450 likes | 781 Views
Indicator Displacement Assays for Solute Sensing. Julee Byram Mecozzi Group May 10, 2007. Chemical Sensors. Detect the presence and quantity of a specific analyte or group of analytes Industrial, Environmental, and Clinical Applications. “Desperately Seeking Sensors”.
E N D
Indicator Displacement Assays for Solute Sensing Julee Byram Mecozzi Group May 10, 2007
Chemical Sensors • Detect the presence and quantity of a specific analyte or group of analytes • Industrial, Environmental, and Clinical Applications
“Desperately Seeking Sensors” Czarnik, A.W. Chem. Biol.1995, 2, 7, 423
“Desperately Seeking Sensors” • Selectivity- specific analyte recognition • Affinity- high Ka value • Spectral properties- detectable signal modulation Czarnik, A.W. Chem. Biol.1995, 2, 7, 423
Traditional Sensing Method Schematic Reproduced From: Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 20
Indicator Displacement Assay (IDA) Schematic Reproduced From: Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 20
Outline Designing Synthetic Receptor Systems Designed Sensors Molecularly Imprinted Polymer Sensors Evolved Sensors Applications and Future Work
Designing a Receptor • Complimentary functional groups • For Binding Diols • Boronic Acids • For Binding Carboxylates • Ammonium Groups • Guanidinium Groups • Urea, Thiourea • Amide • Metal Interactions • Pre-organized Cavity
Boronic Acids as Binding Groups • Complex saccharides and other 1,2- and 1,3-diols • Form reversible covalent bonds with diols, creating boronic esters • Kinetics of interconversion fast when boron tetrahedral • Incorporation of an amine adjacent to the boronic acid creates a tetrahedral sp3 boron at or near neutral pH Wiskur, S.L. et al.Organic Letters2001, 3, 9, 1311 Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 16
Binding Carboxylates Ammonium Guanidinium Amide Urea, Thiourea
Outline Designing Synthetic Receptor Systems Designed Sensors Evolved Sensors Molecularly Imprinted Polymer Sensors Applications and Future Work
Synthetic Citrate Receptors 1.3.5-2,4,6-Functionalized Facially Segregated Benzene Scaffold Citrate Guanidinium Groups (Anslyn) Guanidinocarbonyl Pyrrole Groups (Schmuck)
Citrate Binding Using Guanidinium Groups yield 63% Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Hennrich, G.; Anslyn, E.V. Chem. Eur. J.2002, 8, 2218 Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc.2005, 127, 3373
Citrate Binding Using Guanidinium Groups Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed.1998, 37, 649
Citrate Binding Using Guanidinium Groups Kassoc (H●C) H●I 6.9 x 103 M-1 2.4 x 103 M-1 H●C + I 3.0 x 103 M-1 Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed.1998, 37, 649
Citrate Binding Using Guanidinium Groups 525 nm Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed.1998, 37, 649
Citrate Binding Using Guanidinium Groups Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed.1998, 37, 649
Citrate BindingUsing Guanidinocarbonyl Pyrrole Groups yield 63% Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc.2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem.2006, 4, 836
Citrate BindingUsing Guanidinocarbonyl Pyrrole Groups + + Kassoc (H●C) 1.6 x 105 M-1 518 nm Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc.2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem.2006, 4, 836
Citrate BindingUsing Guanidinocarbonyl Pyrrole Groups Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc.2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem.2006, 4, 836
Multi-analyte Differential Sensing • Nature often does not use highly selective receptors • “Differential” receptors used in arrays • Response from each of these receptors for a particular mixture of stimuli creates a pattern
Principle Component Analysis (PCA) Buryak, A.; Severin, K. J. Am. Chem. Soc.2005, 127, 3700
Artificial Neural Network (ANN) Multi-Layer Perceptron (MLP) Hidden Output Input Sensor 1 Sensor 2 Sensor 3 Greene, N.T.; Morgan, S.L.; Shimizu, K.D. Chem. Commun.2004, 10, 1172
Receptors for Tartrate and Malate Sensing Tartrate Malate Similar affinity for both Greater affinity for tartrate Predicted Tartrate Binding Actual Tartrate Binding Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666
Combined Sensing of Tartrate and Malate Kassoc (H●A) 5.5 x 104 M-1 Tartrate 4.8 x 104 M-1 Malate Alizarin Complexone Similar affinity for both H●I H●A + I Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666
Combined Sensing of Tartrate and Malate Succinate (▲) Tartrate () Ascorbate (◊) Glucose (■) Malate (○) Lactate (●) 450 nm Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666
Differential Sensing of Tartrate and Malate λmax = 445 nm λmax = 567 nm Tartrate Malate Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666
Differential Sensing of Tartrate and Malate Training Set Data 0.2 mM Tartrate 0.6 mM Malate 0.6 mM Tartrate 0.2 mM Malate Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666
Outline Designing Synthetic Receptor Systems Designed Sensors Evolved Sensors Molecularly Imprinted Polymer Sensors Applications and Future Work
Systematic Evolution of Ligands by Exponential Enrichment (SELEX) Schematic Reproduced From: http://surgery.duke.edu/wysiwyg/images/surgery_SELEX.jpg
Aptamer-Based Sensor for Cocaine 518 nm 472 nm Kd ~ 100 μM Cocaine concentration in serum 10-4000 μM Stojanovic, M.N.; Prada, P.; Landry, D.W. J. Am. Chem. Soc.2001, 123, 4928
Aptamer-Based Sensor for Cocaine Kd < 5 μM Stojanovic, M.N.; Landry, D.W. J. Am. Chem. Soc.2002, 124, 9678
Aptamer-Based Sensor for Cocaine 3 4 C 0 = blank control Stojanovic, M.N.; Landry, D.W. J. Am. Chem. Soc.2002, 124, 9678
Outline Designing Synthetic Receptor Systems Designed Sensors Evolved Sensors Molecularly Imprinted Polymer Sensors Applications and Future Work
Molecularly Imprinted Polymer (MIP) Sensor Array Greene, N.T.; Shimizu, K.D. J. Am. Chem. Soc.2005, 127, 5695
Molecularly Imprinted Polymer (MIP) Sensor Array Stephenson, C.J.; Shimizu, K.D. Polym. Int.2007, 56, 482
Molecularly Imprinted Polymer (MIP) Sensor Array Benzofurazan-based Amine Dye λmax 460 nm Greene, N.T.; Shimizu, K.D. J. Am. Chem. Soc.2005, 127, 5695
Outline Designing Synthetic Receptor Systems Designed Sensors Evolved Sensors Molecularly Imprinted Polymer Sensors Applications and Future Work
Applications and Future • Electronic Tongue • Medical Tests • Food Science • Chemical Warfare
Acknowledgements • Professor Sandro Mecozzi • Mecozzi Group Members • Peter Anderson • Jonathan Fast • Andrew Razgulin • Practice Talk Attendees • Becca Splain • Maren Buck • Katherine Traynor • Matt Windsor • Claire Poppe • Alex Clemens • Richard Grant • Jessica Menke • Lauren Boyle • Margie Mattmann • God, Family, and Friends