590 likes | 744 Views
复杂系统研究的科学基础. 自组织理论与动力学. 狄增如 北京师范大学管理学院系统科学系 北京师范大学复杂性研究中心 2010.7. I. Prigogine. H. Haken. 自组织理论. I. Progogine: Far-from-equilibrium studies led me to the conviction that irreversibility has a constructive role. It makes form. It
E N D
复杂系统研究的科学基础 • 自组织理论与动力学 狄增如 北京师范大学管理学院系统科学系 北京师范大学复杂性研究中心 2010.7
I. Prigogine • H. Haken
自组织理论 I. Progogine: Far-from-equilibrium studies led me to the conviction that irreversibility has a constructive role. It makes form. It makes human beings. 自组织系统的主要特征: 1、开放系统,与环境有物质和能量交流; 2、组元众多,且存在非线性相互作用; 3、远离平衡态; 4、涨落是有序结构形成的触发器。
分支图 参数
生物进化树 生物、社会、经济等领域中的应用
系统演化的动力学描述 • 关心系统演化的极限行为及其随环境条件的变化所导致的分支行为 • 线性稳定性分析,分支理论,突变论
关于混沌 Chaos 古希腊与中国:混沌初开 20世纪80年代,混沌理论成为一个 新的、激动人心的科研领域 它将深刻地改变我们对自然及人类的认识
种群增长与倍周期分叉 混沌区
混沌的基本性质 对初值的敏感依赖性——蝴蝶效应 差之毫厘,失之千里 确定性系统中的随机行为 在不引入任何随机因素的情况下,一个 简单的系统可以产生非常不规则的行为 一种没有周期性的有序
分形结构 Fractal 分形:Logistic map, Lorenz attractor, Mandelbrot set, Julia set
生物体中的分形 人体血管总体积<5% 肺的总面积>网球场 • 股票分时走势图
为什么混沌如此引人注目? 混沌揭示了简单性和复杂性、有序和无序 之间的精妙关联,从而沟通了科学与生活; 一个遵循基本物理规律、确定论性的世界, 可以是无序的,具有复杂性和不可预测性; 复杂现象的背后可能具有简单的规律; 在任何层次上,我们对未来的理解和预测都是 有限的; 混沌是非常漂亮的。
二十世纪物理学的重要进展 * 量子力学——微观世界 * 狭义与广义相对论——宏观世界 * 自组织与混沌——生命现象
The Cell Cycle Nurse P. The incredible life and times of biological cells. Science 289:1711, 2000
Protein Micro-arrays Detecting Protein Interaction/Biochemistry Service RF. Protein arrays step out of the shadows. Science 289:1673, 2000
Minority Game Agent-based Computational Economics
案例研究:心脏中的动力学 UCLA Cardiology Division
CARDIAC FIBRILLATION • Ventricular fibrillation • 220,000 sudden deaths annually in U.S. • Atrial fibrillation • 6% of population over age 65 • 1/3 of all strokes over age 65 • doubled mortality rate
VT to VF transition VF maintenance VT initiation ? ? PVC Hypothesis CAST SWORD SUDDEN CARDIAC DEATH
The Basic Unit 10 mm
Ca2+ Na+ K+ -80 mV T-tubules T tubule myofilaments
Ca2+ (10-20%) Extracellular space Ca channel T-tubule membrane Ca release channel (Ryanodine receptor) Ca2+ (80-90%) SR Ca ATPase Sarcoplasmic reticulum Ca2+
3D Confocal Image of T-tubule System Courtesy of Joy Frank, PhD & Alan Garfinkel, PhD UClA Cardiovascular Research Laboratory
Courtesy of Joy Frank, PhD UCLA Cardiovascular Research Laboratory
RyRs DHPR Ca DHPRs Ca RyRs Ca SR Ca stores
Na+-Ca2+ Exchanger SL Ca2+- ATPase Ca2+ (10-20%) 3Na+ Calsequestrin Ca channel T-tubular membrane Ca release channel (Ryanodine receptor) Ca2+ Ca2+ (80-90%) Sarcoplasmic reticulum SR Ca ATPase
Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 1952;117:500-544.
mV time(ms)
Cardiac Action Potential Model dVm/dt = -S (Iionic + Iext)/ Cm Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Circ. Res.77:140-152, (1995)
50000 steps in 4.43 seconds 20 0 -20 V (mV) -40 -60 -80 -100 0 100 200 300 400 500 600 700 800 900 1000 TIME (msec) 2 ms 15 mA = Runge-Kutta 4th order, DT = .02 ms
FitzHugh-NagumoModel: Barkley Dynamics: du/dt= f(u,v)=u(1-u)[u-(v+b)/a]/, dv/dt=g(u,v)=u-v u 1 g(u,v)=0 0.9 v 0.8 0.7 0.6 v= au-b x, y 0.5 0.4 b 0.3 v 0.2 0.1 u 0 0 2 4 6 8 10 12 14 16 18 20 TIME
vanCapelle FJL, Durrer D. Computer simulation of arrhythmias in a network of coupled excitable elements. Circ. Res. 1980;47:454-466.
¶ V = - + I / C D V Ñ . Ñ ion m t ¶ å å = = I I f ( V ) ion k k Neumann boundary condition : r . = n V 0 Ñ
P Plane Wave S Spiral Wave SK Spiral Wave Breakup
1 2 What Causes The Waves To Break? Traditional Answer: Pre-existing Tissue Heterogeneities (anatomic or electrophysiological) Slope < 1
APD S2 S1 Diastolic Interval
Electrical Restitution (S1S2 Method) APD Restitution CV Restitution THE SLOPE! >1 : + gain amplifier <1 : - gain attentuator Wavelength Is Also Controlled Dynamically by Electrical Restitution (in the absence of pre-existing heterogeneities)
2 1 3 Dynamic Wavebreak: The Role of APD Restitution Steepness Slope < 1 Slope > 1
X Steep Slope Shallow Slope Y X Y Y Y < X X
A B a a b 150 b 100 100 c APD (ms) APD (ms) 50 c 50 0 0 0 50 100 0 50 100 150 DI (ms) DI (ms) b b c c d d 0 0 -40 -40 V (mV) V (mV) -80 -80 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 t (ms) t (ms)