170 likes | 338 Views
Interference of Two Molecular Bose-Einstein Condensates. Christoph Kohstall Innsbruck FerMix, June 2009. Fer ( Mix ) -Team. Johannes Hecker Denschlag. Christoph Kohstall. Rudi Grimm. Leonid Sidorenkov. Edmundo Sánchez Guajardo. Stefan Riedl.
E N D
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009
Fer(Mix)-Team Johannes Hecker Denschlag Christoph Kohstall Rudi Grimm Leonid Sidorenkov Edmundo Sánchez Guajardo Stefan Riedl
Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian to Gumbel type, in excellent agreement with theoretical predictions on the basis of the Luttinger-liquid formalism. We present the first experimental observation of quasi-long-range order in one-dimensional atomic condensates, • Interference of atomic Bose condensates • A powerful tool to study Bose gases • Interference meets Fermi gases • Interesting challenges Fermions form bosonic pairs strong interaction
Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian to Gumbel type, in excellent agreement with theoretical predictions on the basis of the Luttinger-liquid formalism. We present the first experimental observation of quasi-long-range order in one-dimensional atomic condensates, • Interference of atomic Bose condensates… • a powerful tool to study Bose gases • Now interference meets Fermi gases • highlights and • interesting challenges from atoms to molecules bosonic pairs of fermions strong interaction
BEC BCS molecules many-body pairs Fermionic lithium – our workhorse Let‘s open the door!
TOF-Images TOF=0.4 ms B = 700 G visibility ~25% 4 ms 8 ms 12 ms 14 ms x z 80 pixel 250 µm 0 z phase visibility fringe spacing
coils for mag. Feshbach field trapping beam beam waist 54 µm ωy 2π*20Hz ωx , ωz 2π*150Hz mag. field 700 G N↑,↓ 200 000 1/kFa 3 separation 64 µm lens Li create split overlap observe CCD AOM z x split create overlap observe z Procedure y x confinement z y x
Expansion coils for mag. Feshbach field trapping beam beam waist 54 µm ωy 2π*20Hz ωx , ωz 2π*150Hz mag. field 700 G N↑,↓ 200 000 1/kFa 3 separation 64 µm lens Li CCD AOM no slicing necessary in situ TOF=0 ms in expansion TOF = 14 ms magnifying glass clouds clouds 4 ms position position position position trap trap trap trap
Relative phase potential clouds phase Same result for independent BECs
Temperature dependence TC bars are rms ~0.5TF=TC
potential pairing lifetime collisions detection 7% 17% 34% not valid 0.1 1 30 Depleted part has no common phase partial reflection Ekin<Emf Ekin>Epairing no survival We gotta be creative ! short lifetime of molecules interactions limit no pairs in expansion
potential pairing lifetime collisions detection 7% 17% 34% not valid 0.1 1 30 partial reflection Ekin<Emf Ekin>Epairing no survival We gotta be creative ! short lifetime of molecules interactions limit no pairs in expansion
Interference of molecular BECs The challenge of strong interaction Tool for new physics