310 likes | 456 Views
AGASA update. M. Teshima ICRR, U of Tokyo @ CfCP mini workshop Oct 4 2002. AGASA Akeno Giant Air Shower Array. 111 Electron Det. 27 Muon Det. 0 4km. Exposures in various experiments. AGASA: Ground Array HiRes: Air Fluorescence. Energy Determination. Local density at 600m
E N D
AGASA update M. Teshima ICRR, U of Tokyo @ CfCP mini workshop Oct 4 2002
AGASAAkeno Giant Air Shower Array 111 Electron Det. 27 Muon Det. 0 4km
Exposures in various experiments AGASA: Ground Array HiRes: Air Fluorescence
EnergyDetermination • Local density at 600m • Good energy estimator by M.Hillas E=2x1020eV, Emin = 1.6x1020eV
S(600) vs Nch Attenuation curve 1018eV Proton Atmospheric depth
Proton S600 Intrinsic fluctuation for proton and iron Iron
Energy Determination in AGASA Please read astro-ph/0209422
Detector Calibration in AGASA experiment Detector Position Gain as a function of time (11years data) Survey from Airplane ΔX,ΔY=0.1m, ΔZ=0.3m Cable delay (optic fiber cable) Accuracy of 100ps by measuring the round trip time in each run Linearity as a function of time (11years data) Detector Gain by muons in each run
Detector Response vertical θ = 60deg Detector Simulation (GEANT) Detector Housing (Fe 0.4mm) Detector Box (Fe 1.6mm) Scintillator (50mm) Earth (Backscattering) Energy spectra of shower particles
AGASA Energy Resolution Angular Resolution
The Conversion from S600 to Energy
Time profile of shower particles Over estimation factor Due to the shower front thickness
Major Systematics in AGASAastro-ph/0209422 • Detector • Detector Absolute gain ± 0.7% • Detector Linearity ± 7% • Detector response(box, housing) ± 5% • Energy Estimator S(600) • Interaction model, P/Fe, Height -10% ±15% • Air shower phenomenology • Lateral distribution function ± 7% • S(600) attenuation ± 5% • Shower front structure +5% ± 5% • Delayed particle(neutron) +5% ± 5% • Total±0% ± 18%
Energy Spectrum by AGASA (θ<45) 10 obs. / 1.6 exp. 4.0σ
Red -Inside Array Green –Well Inside 4.6 x 1016 m2 s sr
Energy determined by Ne andEnergy determined by S600 Ne 8.5x1018eV S600 9.3x1018eV
AGASA vs HiRes (astro-ph) See new paper: Energy determination in AGASA (astro-ph/0209422)
2001 ICRC 2002 Astro-ph AGASA & HiRes 1999 ICRC
Possible Systematics in HiResMost of them are energy dependent Air Fluorescence yield • Total yield is known with 10% accuracy • Yields of individual lines are not known well • Rayleigh Scattering effect (∝1/λ4) Light transmission in air • Mie Scattering • Horizontal attenuation, Scale Height, Wind velocity, Temperature single model represents whole data • Horizontal 12km (1999) 25km (2001) Cherenkov light subtraction Errors in Mono analysis • Aperture estimation (Narrow F.O.V.) • Chemical composition / Interaction dependent
Arrival Direction Distribution No Large Scale Anisotropy. Event Clusters: 1Triplet and 6 doublets P(chance) ~ 0.07%. Interacting Galaxy VV141 in the direction of triplet at 100Mpc. Arrival directions of 59events > 4 x1019eV observed by AGASA
Arrival Direction Distribution of EHE cosmic rays >4x1019eV >1019eV
The distribution of Space angle between eventsSuggest compact sources!! 5 sigma effect 3 sigma effect >1019eV >4x1019eV
V1-V2 plot in Galactic coordinateOuter Galaxy region|bII|<60, 90<lII<180 1. From 1019eV 2. Extended linearly ΔbII 20ox20o ΔlII Log(E)>19.00 19.15 19.70
The polarization angle 40 degrees 1019eV 1.8 degree x 10 degree box
Cosmic Ray propagation in Galactic Magnetic Field ΔbII ΔlII Aperture By Stanev
Energy spectrum of Cluster events∝E -1.8+-0.3 Cluster Component
Gamma Rays in EHECR With 95% C.L. γ/all< 28% at >1019eV γ/all < 67% at >1019.5eV
Summary • Super GZK particles exist • AGASA HiRes inconsistency??? • Statistically consistent, but we need cross-calibration • Origin of EHECR (Possible scenario) • Decay of Heavy Relics in our Halo • Z-burst by EHE neutrino • Violation of Special Relativity • AGN’s, GRB’s or other astronomical objects • Clear evidence for point sources of EHECR • Elongated shaped excess of ~10°in 2-D correlation map • Consistent with the charged particle deflection by G.M.F. The beginning of the EHECR astronomy