1 / 10

Models and their benefits.

Models and their benefits. Models + Data probability of data (statistics...) probability of individual histories hypothesis testing parameter estimation. Wright-Fisher Model of Population Reproduction. Haploid Model.

Download Presentation

Models and their benefits.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Models and their benefits. • Models+ Data • probability of data (statistics...) • probability of individual histories • hypothesis testing • parameter estimation

  2. Wright-Fisher Model of Population Reproduction Haploid Model i. Individuals are made by sampling with replacement in the previous generation. ii. The probability that 2 alleles have same ancestor in previous generation is 1/2N Assumptions Constant population size No geography No Selection No recombination Diploid Model Individuals are made by sampling a chromosome from the female and one from the male previous generation with replacement

  3. 10 Alleles’ Ancestry for 15 generations

  4. Waiting for most recent common ancestor - MRCA Distribution until 2 alleles had a common ancestor, X2?: P(X2 > j) = (1-(1/2N))j P(X2 > 1) = (2N-1)/2N = 1-(1/2N) P(X2 = j) = (1-(1/2N))j-1 (1/2N) j j 2 2 1 1 1 1 1 1 2N 2N 2N Mean, E(X2) = 2N. Ex.: 2N = 20.000, Generation time 30 years, E(X2) = 600000 years.

  5. P(k):=P{k alleles had k distinct parents} 1 1 2N Ancestor choices: k -> k k -> any k -> k-1 k -> j (2N)k 2N *(2N-1) *..* (2N-(k-1)) =: (2N)[k] Sk,j - the number of ways to group k labelled objects into j groups.(Stirling Numbers of second kind. For k << 2N:

  6. Expected Height and Total Branch Length Branch Lengths Time Epoch 1 2 1 2 1 1/3 3 2/(k-1) k Expected Total height of tree: Hk= 2(1-1/k) i.Infinitely many alleles finds 1 allele in finite time. ii. In takes less than twice as long for k alleles to find 1 ancestors as it does for 2 alleles. Expected Total branch length in tree, Lk: 2*(1 + 1/2 + 1/3 +..+ 1/(k-1)) ca= 2*ln(k-1)

  7. 6 Realisations with 25 leaves Observations: Variation great close to root. Trees are unbalanced.

  8. Sampling more sequences The probability that the ancestor of the sample of size n is in a sub-sample of size k is Letting n go to infinity gives (k-1)/(k+1), i.e. even for quite small samples it is quite large.

  9. Infinite Site Model Final Aligned Data Set:

  10. Recombination-Coalescence Illustration Copied from Hudson 1991 Intensities Coales.Recomb. 0  1 (1+b) b 3 (2+b) 6 2 3 2 1 2

More Related