1 / 23

Quark-model baryon-baryon interactions and their applications to few-body systems

Quark-model baryon-baryon interactions and their applications to few-body systems. Y. Fujiwara ( Kyoto) Y. Suzuki ( Niigata ) C. Nakamoto (Suzuka) M. Kohno ( Kyushu Dental ) K. Miyagawa ( Okayama) 1. Introduction

karim
Download Presentation

Quark-model baryon-baryon interactions and their applications to few-body systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quark-model baryon-baryon interactions and their applications to few-body systems Y. Fujiwara (Kyoto) Y. Suzuki (Niigata) C. Nakamoto (Suzuka) M. Kohno(Kyushu Dental) K. Miyagawa(Okayama) 1. Introduction 2. B8B8 interactions fss2 and FSS: spin-flavor SU6 symmetry 3. B8 interactions by quark-model G-matrix 4. Some applications 4.1. N interaction and 3H Faddeev calculation 4.2 effective  potential and 9Be Faddeev calculation 4.3.  s. p. potential and  , (3N) potentials 4.4. N total cross sections and  potential 5. Summary 2006.10.13 HYP2006 Mainz

  2. 6 i=1 ∑ ∑ 6 i<j Oka – Yazaki (1980)  Phys. Rev. C64 (2001) 054001 Phys. Rev. C65 (2002) 014001 B8B8 interactions by fss2 • Short-range repulsion and LS by quarks • Medium-attraction and long-rang tensor byS,PSandV • meson exchange potentials (fss2) (Cf. FSS withoutV) Phys. Rev. C54 (1996) 2180 Model Hamiltonian Anatural and accurate description of NN, YN, YY interactions in terms of (3q)-(3q) RGM H = (mi+pi2/2mi) + +(UijConf+UijFB+∑βUijSβ +∑βUijPSβ + ∑βUijVβ) f(3q)f(3q)|E-H|A {f(3q)f(3q)c(r)}=0 PPNP in press Arndt : SAID Nijmegen : NN-OnLine QMPACK homepagehttp://qmpack.homelinux.com/~qmpack/index.php 2006.10.13 HYP2006 Mainz

  3. P.T.P. 103 (2000) 755 Lippmann-Schwinger (LS) RGM Solve [ - H0 - VRGM() ] =0withVRGM()=VD+G+ K in the mom. representation ( = E - Eint ) Born kernel qf|VRGM() |qi  T-matrix, G-matrix 1) non-local 2) energy-dependent 3) Pauli-forbidden states in N - N (I=1/2),  - N -  (I=0),  -  (I=1/2) 1S0 : i.e. SU3 (11)s : Ku=u 3-cluster Faddeev formalism using VRGM() P.T.P. 107 (2002) 745; 993 self-consistency equation for 

  4. B8 interaction by quark-model G-matrix  : “(0s)4” =0.257 fm-2 G (p, p’; K, , kF) B8 relative q’ k’=p’- p , q’=(p+p’)/2 incident q1 G (k’,q’; q1, q’) in total c. m.  - cluster folding kF=1.35 fm-1 k=k’ q1=qfor direct and knock-on V (k, q) VW (R, q) : Wigner transform k=pf - pi , q=(pf+pi)/2 V (pf , pi) U(R)=VW(R, (h2/2)(E-U(R)) Transcendental equation Lippmann - Schwinger equation Schrödinger equation exact EB ,  (E) EBW , W(E) 2006.10.13 HYP2006 Mainz

  5. “constant K , , kF” q1=0 q’=3/5 kF kF=1.35fm-1 n RGM by G-matrix of fss2 n sactt. phase shift S1/2 P3/2 P1/2 exp 2006.10.13 HYP2006 Mainz

  6. S B8B8(I) 1E, 3O (P =symmetric) 3E, 1O (P =antisymmetric) NN(0) NN(1) ― (22) (03) ― ‐1 LN SN(1/2) SN(3/2) [(11)s+3(22)] [3(11)s‐(22)] (22) [‐(11)a+(03)] [(11)a+(03)] (30) LL XN(0) XN(1) SL SS(0) SS(1) SS(2) (11)s+ (22)+ (00) (11)s‐ (22)+ (00) (11)s+ (22) ー (11)s+ (22) (11)s-    (22)- (00) ― (22) ― (11)a [‐(11)a+ (30)+(03)] [(30)‐(03)] ― [2(11)a+ (30)+(03)] ― ‐3 XL XS(1/2) XS(3/2) [(11)s+3(22)] [3(11)s‐(22)] (22) [‐(11)a+(30)] [(11)a+(30)] (03) XX(0) XX(1) ― (22) (30) ― B8B8 systems classified in the SU3 states with (l, m) 0 ‐2 ‐4 (30)almost forbidden (m=2/9) (11)scomplete Pauli forbidden

  7. Spin-flavor SU6 symmetry 1. Quark-model Hamiltonian is approximately SU3 scalar ・ no confinement contribution (assumption)   ・ Fermi-Breit int. … quark-mass dependence only   ・ EMEP … automatic SU3 relations for coupling constants phenomenologyCf. OBEP: exp data  g, f,  … (integrated) 2. -on plays an important role through SU3 relations and FSB 3. effect of the flavor symm. breaking (FSB) by ms>mud , B, M masses Characteristics of SU3 channels

  8. 1S0 phase shifts for B8B8 interactions with the pure (22) state (fss2) S=‐2 1S0 S=0 S=‐3 S=‐1 (22) S=‐4 effect of FSB is very large

  9. 3S1 phase shifts NN fss2 3S1 (03) NN (03) central only (no  tensor) (3/2) (11)a (11)a : weakly attractive N (0)  (0) (30) N (3/2) (30) : Pauli repulsion

  10. +p differential cross sectionsand +p, pasymmetries a() Ahnet al.(KEK-PS E251, E289) NP A648(1999)263, A761(2005)41 Kurosawa et al. (KEK-PS E452B) KEK preprint 2005-104 (2006) 350 MeV/c  plab 750 MeV/c +p +p elastic aexp=0.44±0.2 at p=800±200 MeV/c reported by K. Nakai p elastic Kadowaki et al.(KEK-PS E452) Euro. Phys. J. A15 (2002) 295

  11. N interaction by fss2 Backward/Forward ratio P-wave N is weakly attractive FSS fss2  from3HeFaddeev N -Ncoupling :3S1 +3D1by one- tensor 1P1+3P1by FB LS (-)

  12. u s u d d d ed=2.22 MeV BΛ=130 ±50 keV 3H (hypertriton) NN-NN CC Faddeev Phys. Rev. C70, 024001 (2004) N on-shell properties are directly reflected 1S0 / 3S1 relative strength “deuteron” Λ(∑0 ) exp’t u u ~5 fm d p P (%) ~2 fm close to NSC89 fss2 289 keV 0.80 FSS 878 keV 1.36 n eNN= 19.37 – 21.03 = -1.66 |ed|= 17.50 – 19.72 = -2.22 (MeV) 150 channel calculation

  13. N 1S0and3S1effective range parameters “fss2”: m c2 = 936 MeV  1,000 MeV favorable for 4H (1+) Effect of the higher partial waves is large 90 – 60 keV vs. 20 – 30 keV in NSC89 BΛexp=130 ±50 keV

  14.  effective local potentials by G-matrix B8B8 interaction effective potentials quark-model N-N ND EB (exact) -3.62 MeV -3.18 MeV EBexp=3.120.02 MeV Cf. U(0)=‐46 (FSS), ‐48 (fss2) MeV in symmetric matter

  15. (3.04 MeV) 2+ 2 Faddeev for 9Be Phys. Rev. C70, 024002, 0407002 (2004) (0) 92 keV 0+  + + 8Be  RGM kernel (MN3R) effective  pot. (SB u=0.98) exp’t -3.120.02 MeV 3067(3) keV 3026 keV 3/2+ +5He 5/2+ 3024(3) keV 2828 keV -6.620.04 MeV 1/2+ calc. 9Be  s splitting byN LS Born kernel 198 keV (fss2 quark+), 137 keV (FSS) : 3  5 times too large Eexp(3/2+ - 5/2+) = 43  5 keV Akikawa, Tamura et al. (BNL E930) Phys. Rev. Let. 88, 082501 (2002)

  16. s splitting of9Beby2 Faddeev using quark-model G-matrix  LS Born kernel FSS (cont) reproduces E exp at kF=1.25 fm-1 ! P-wave N-N coupling by LS(-) is important. S-meson LS in fss2 is not favorable.

  17.  potentials (VWC (R, 0)) by quark-model G-matrix interaction FSS fss2 I=3/2 I=3/2 total total I=1/2 I=1/2 The Pauli repulsion of N(I=3/2) 3S1 is very strong.

  18.  (3N) potentials by quark-model G-matrix interaction ( 0+, T=1/2 channel) (3N): (0s)3 =0.22 fm-2 q1=0 FSS fss2 EB(exact)=-3.79 MeV EB(exact)=-5.70 MeV consistent with 4He (0+) resonance

  19. (-, K+)inclusive spectra on28Si exp: Noumi et al. PRL 89, 072301 (2002) ; 90, 049902 (E) (2003) Saha et al. Phys. Rev. C70, 044613 (2004) poster session by M. Kohno Repulsive U (q) in symmetric nuclear matter is experimentally confirmed.

  20.  potentials (VWC (R, 0)) by quark-model G-matrix interaction FSS fss2 I=1 I=1 total total I=0 I=0 Some attraction in the surface region.

  21. +3.7 -3.6 Tamagawa et al.(BNL-E906) Nucl. Phys. A691 (2001) 234c Yamamoto et al. Prog. Theor. Phys. 106 (2001)363 - (in medium) = 30.7±6.7 mb (eikonal approx.)= 20.9±4.5 mb +2.5 -2.4 +1.4+0.7 -0.7 -0.4 -p /-n =1.1 at plab=550 MeV/c   FSS fss2 Ahn et al. Phys. Lett. B 633 (2006) 214   More experiments are needed.

  22. Summary Quark-model description for the baryon-baryon interaction is very successful to reproduce many experimental data. In particular, the extension of the (3q)-(3q) RGM study for the NN and YN interactions to the strangeness S=-2, -3, -4 sectors has clarified characteristic features of the B8B8 interactions. The results seem to be reasonable if we consider 1)spin-flavor SU6 symmetry 2) weak π-on effect in the strangeness sector 3) effect of the flavor symmetry breaking We have analyzed B8, B8(3N) interactions based on the G-matrix calculations of fss2 and FSS.

  23. Characteristics of fss2 and FSS S=0 ・ triton binding energy … fss2: +150 keV (3 body force?) S=‐1 pand+pinteractions are progressively known. ・ +p total and differential cross sections and polarization … fss2, FSS ・ N1S0 and 3S1 attraction (relative strength) ( 3H Faddeev calculation: 289 keV for fss2) ・ small s splitting in 9Beexcited states(FSS) ・ N (I=1/2 1S0), N (I=3/2 3S1) repulsion  repulsive s. p. and  potentials … fss2, FSS S=‐2  interaction is not much attractive ! ・  interaction |V|<|VN|<|VNN| B  1 MeV (Nagara event 6He) … fss2 ・ N in-medium total cross section (fss2, FSS) … strong isospin dependence of  s.p. potential ・ N (I=0 3S1): (11)a  0 or weakly attractive (fss2, FSS) vs. ESC04(d): strongly attractive

More Related