280 likes | 388 Views
Geostrophic turbulence on a b -plane: a laboratory investigation of “How the planets got their stripes…”. Oxford University (UK): Peter Read , Stephen Lewis, Hiro Yamazaki, Kuniko Yamazaki, Paul Williams, Robin Wordsworth LEGI/Grenoble: Joel Sommeria, Henri Didelle, Adam Fincham
E N D
Geostrophic turbulence on a b-plane: a laboratory investigation of “How the planets got their stripes…” Oxford University (UK):Peter Read, Stephen Lewis, Hiro Yamazaki, Kuniko Yamazaki, Paul Williams, Robin Wordsworth LEGI/Grenoble: Joel Sommeria, Henri Didelle, Adam Fincham Support: EC HCMR Programme (HYDRALAB)
The Problem • Zonally anisotropic flows observed on the outer planets (Jupiter, Saturn, Neptune….) • Intense, barotropic(?) and very stable • ‘Zonation’ in the terrestrial oceans…? • ‘Eddy-resolving’ models • Satellite observations…? • Origin of anisotropic organisation of flow? - geostrophic turbulence on a b-plane? - deep or shallow? - what determines preferred scales - LR, Lb...? • Evidence in idealised numerical models …e.g.Chekhlov et al. 1996 and ff? • Laboratory experiments….? EGU 2005 Vienna
Jovian Jets • b - uyy < 0 in easterly jets • Barotropically unstable…? • Need to take into account full PV…? Cassini ISS winds (Porco et al. 2003) EGU 2005 Vienna
Zonation in the Ocean Global Ocean (Satellite Observations) Pacific Ocean (OCCAM model) (Maximenko et al. (2005) From Andrew Coward (SOC) EGU 2005 Vienna
Schematic “Rhines Effect” Anisotropic (nonlocal) Zonal cascade EGU 2005 Vienna
Anisotropic KE spectraGalperin & Sukoriansky (2001,2002…) • Accumulation of energy along ky axis • cKe2/3k-5/3 spectrum in almost all directions • czb2k-5 spectrum representing anisotropic inverse energy cascade along ky axis for k < kb…? [cz ~ 0.5] EGU 2005 Vienna
Conditions for anisotropic geostrophic turbulence (Galperin 2005) • Anisotropic energy transfer (into zonal flow) • Stabilisation of zonal flow by b-effect • Forcing must be on scales unaffected by b-effect (v. small) • kb/kfr extends over > half decade • Sufficient for existence of an inertial range • Dissipation sufficient to suppress enstrophy subrange EGU 2005 Vienna
Comparison of zonal and residual spectra in the ocean, giant planets and computer simulations (Galperin & Sukoriansky 2001-2004) EGU 2005 Vienna
Experimental Requirements • Horizontal scale L > Lb ~ (U/b)1/2 • Reynolds number UL/n > 103 • Suitable forcing on a small scale (<< L) - preferably not fixed in space… • Rapid rotation (small Rossby number) ß LARGE-SCALE EXPERIMENT EGU 2005 Vienna
Coriolis Laboratory (Grenoble) • Largest rotating fluids facility • 13 m dia. cylindrical tank • Up to 1 m deep • Rotation to 40s period (2W </= p/10 rad s-1) • Equipped for CIV and various measurement systems (profilers etc.) EGU 2005 Vienna
Experimental configuration Free upper surface Water layer Slope ~ 5 - 6o LRext~ 5 - 7 m LRint~ 0.1 m Lb > 1 - 2 m EGU 2005 Vienna
Experimental configuration EGU 2005 Vienna
Convective forcing • Overhead salt-water spray system • Nozzles mounted on rotating, radial arm • Spacing/orientation designed to supply uniform buoyancy flux • Rotation, density and flow rate controlled EGU 2005 Vienna
Vertical section - velocities & convection 50 cm EGU 2005 Vienna
Measurement configuration EGU 2005 Vienna
Visualisation of vortices & jets EGU 2005 Vienna
Vertical flow structure • Vertically-averaged flow on large scales • RMS baroclinic KE fluctuations on small scales • L~1-10 cm (~LRint) << Lb EGU 2005 Vienna
WA Horizontal velocities (b~0.002 m-1 s-1) EGU 2005 Vienna
Zonal mean flow - (b~0.002 m-1 s-1) EGU 2005 Vienna
WA Horizontal velocities (b=0.05 m-1 s-1) EGU 2005 Vienna
NA Horizontal velocities (b=0.05 m-1 s-1) EGU 2005 Vienna
Zonal mean flow - (b=0.05 m-1 s-1) Lb EGU 2005 Vienna
Jet scale as fn of b 0.001 • Jet width decreases with increasing b • Direction alternates with radius • Time-varying meanders - transient effects? • Wind-stress residuals? 0.02 0.05 EGU 2005 Vienna
Vorticity gradients: Rayleigh-Kuo/Arnol’d-Dickii criteria? • Sloping bottom case: urr ~ b even in time-mean • Instantaneous urr > b by factor > 5…. EGU 2005 Vienna
KE Spectra b=0.05 m-1 s-1(slope)b=0.002 m-1 s-1(flat) EGU 2005 Vienna
Eddy-zonal flow interactions:non-local spectral energy transfer? • Separately compute 1/r ∂(ru’v’)/∂r and ∂u/∂t • Correlate in time (with delay) • Strong covariance around t = 0: • KE conversion from eddies->mean flow EGU 2005 Vienna
Conclusions • Successful generation (& measurement) of (~barotropic) geostrophic turbulence via salt-driven natural convection [on a very large scale!] • Clear evidence of Rhines effect, vortices & zonation • Eddy momentum fluxes - directly into zonal jets • Total and eddy KE spectra • Clear k-5/3 “inertial ranges” • Possible evidence for czb2k-5 with sloping bottom (large b only?) • …leading into k-8/3 for k > 20 m-1 for zonal flow? • Barotropic stability of zonal jets….? • Rossby critical layers & PV staircase… • Near-neutral stability in time-average flow (NOT instantaneously) • Unifies dynamics in giant planet atmospheres, oceans & lab. • Future Work: • Long-term development of jets? • Model studies….QUAGMIRE… EGU 2005 Vienna
QUAsi-Geostrophic Model for Investigation of Rotating Experiments • 1,2 or more-layer QG dynamics • Cylindrical annular geometry • High resolution semi-spectral representation of fields: • Fourier harmonics in azimuth • Finite-difference in r and z • Steady and/or stochastic (small-scale) forcing EGU 2005 Vienna