1 / 34

Resource Constraint Propagation (Non-Preemptive Case)

Resource Constraint Propagation (Non-Preemptive Case). Outline. Classes of resources Constraint propagation models Explicit time-tables Disjunctive constraints Energetic reasoning Edge finding (task intervals) Comparison. Classes of resources. Unary resources Discrete resources

karsen
Download Presentation

Resource Constraint Propagation (Non-Preemptive Case)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Resource Constraint Propagation(Non-Preemptive Case)

  2. Outline • Classes of resources • Constraint propagation models • Explicit time-tables • Disjunctive constraints • Energetic reasoning • Edge finding (task intervals) • Comparison

  3. Classes of resources • Unary resources • Discrete resources • State resources • Energetic resources

  4. A B time C Unary resources • Main resources in 4/10 problems • Example: one individual machine or person

  5. B A C time D Discrete resources • Main resources in 5/10 problems • Example: group of identical machines

  6. B A C time D State resources • Main resources in 1/20 problems • Example: oven with different temperatures

  7. C Energetic resources • Main resources in 1/20 problems • Example: number of man-days per week A B time

  8. Constraint propagation models • Explicit time-tables • Disjunctive constraints • Energetic reasoning • Edge finding (task intervals)

  9. Explicit time-tables (UD) • WA(t) = [start(A) £ t < end(A)] • "t, SA [WA(t) * capacity(A)] £ capacity(t) A C B time C

  10. B Explicit time-tables (S) • WA(t) = [start(A) £ t < end(A)] • "t, WA(t) implies [state(A) = state(t)] D A C time D

  11. Explicit time-tables (E) • aA(I) = max(0, endmin(A) - start(I)) • bA(I) = max(0, end(I) - startmax(A)) • d(I) = end(I) - start(I) • d(A) = durationmin(A) • WA(I) = min(aA(I), bA(I), d(I), d(A)) • SA [WA(I) * capacity(A)] £ capacity(I)

  12. Explicit time-tables (E) A B time C

  13. Explicit time-tables: 2 models • Discrete array • Sequential table or binary tree B D A C time

  14. Explicit time-tables: extensions • Minimal capacity constraints (UDE) • Default state (S) • Constraints between time-tables or between time-tables and other variables (UDES)

  15. Disjunctive constraints (U) • [end(A) £ start(B)] • OR [end(B) £ start(A)] • [endmin(A) > startmax(B)] • implies [end(B) £ start(A)] • [endmin(B) > startmax(A)] • implies [end(A) £ start(B)]

  16. Disjunctive constraints (U) • Optional activities • Resource alternatives • Sub-contracts • Transition times • Tool setups • Color changes • Cleaning

  17. Disjunctive constraints (U) • [end(A) + ttime(A, B) £ start(B)] • OR [end(B) + ttime(B, A) £ start(A)] • OR [duration(A) = 0] • OR [duration(B) = 0] • OR [capacity(A) = 0] • OR [capacity(B) = 0]

  18. Disjunctive constraints (D) Redundant (but insufficient!) constraint [end(A) £ start(B)] • OR [end(B) £ start(A)] • OR [duration(A) = 0] • OR [duration(B) = 0] • OR [capacity(A) + capacity(B) £ capacity]

  19. Disjunctive constraints (S) • [end(A) + ttime(A, B) £ start(B)] • OR [end(B) + ttime(B, A) £ start(A)] • OR [duration(A) = 0] • OR [duration(B) = 0] • OR [state(A) = state(B)]

  20. Energetic reasoning (UD) • aA(I) = max(0, endmin(A) - start(I)) • bA(I) = max(0, end(I) - startmax(A)) • d(I) = end(I) - start(I) • d(A) = durationmin(A) • WA(I) = min(aA(I), bA(I), d(I), d(A)) • SA [WA(I) * capacity(A)] £ capacity(I)

  21. Energetic reasoning (UD) • Habographs [Beck 92] • Intervals: [id .. jd) or [b + id .. b + jd) • Energetic resources [Le Pape 94] • Intervals: [id .. (i+1)d) or [b + id .. b + (i+1)d) • Energetic reasoning rules [Lopez 91] • Intervals: [startmin(A) .. endmax(B)) or [startmin(A) .. x)

  22. Energetic reasoning (U) • I = [startmin(A) .. endmax(B)) • d(I) <SC<>A,BWC(I) +d(A) +d(B) • implies [end(B) £ start(A)] A[1..8 - 2 - 3..10] B[0..3 - 2 - 2..5] C[2..4 - 1 - 3..5] I = [1 .. 5) [4 < 1 + 2 + 2] implies [2 £ start(A)]

  23. Energetic reasoning (U) • start(I) = startmin(A) • d(I) <SC<>AWC(I) + min(d(A), d(I)) • implies [start(I) +SC<>AWC(I) £ start(A)] A[0..11 - 6 - 6..17] B[1..7 - 4 - 5..11] C[1..8 - 3 - 4..11] I = [0 .. 11) [11 < 4 + 3 + 6] implies [7 £ start(A)]

  24. Edge finding (U) • Basic idea Prove that an activity A executes before (or after) a set of other activities W • Notations smin(W) = minBÎW startmin(B) emax(W) = maxBÎW endmax(B) dmin(W) =SBÎW durationmin(B)

  25. Edge finding (U) • emax(W) < smin(W + {A}) + dmin(W + {A}) • implies [smin(W') + dmin(W') £ start(A)] • for every W' included in W A[0..11 - 6 - 6..17] B[1..7 - 4 - 5..11] C[1..8 - 3 - 4..11] W= {B C} [11 < 0 + 13] implies [1 + 7 £ start(A)]

  26. Edge finding (U) • Jackson's Preemptive Schedule [Pinson 88] [Carlier & Pinson 90/94] • O(n2) O(n*log(n)) • Iterative algorithm [Nuijten 93/94] • O(n2) with no specific data structure • Task intervals [Caseau & Laburthe 94] • O(n3) • Incremental • More deductions è more precise time-bounds

  27. Edge finding (U) • "Not-first" deduction rule emax(W) < smin(A) + dmin(W + {A}) • implies [minBÎW(smin(B) + dmin(B)) £ start(A)] • [Nuijten 94] [Caseau & Laburthe 94] • [Baptiste & Le Pape 96]: Complete application in O(n2) time and O(n) space

  28. Edge finding (U) • "Not-first" deduction rule with knapsack D= smin(A) + dmin(W + {A}) - emax(W) > 0 • implies [minW' | f(W')(smin(W') + dmin(W')) £ start(A)] • with f(W') defined as [W=W' OR D£ dmin(W')] • Complete application in exponential time (includes the NP-complete knapsack problem) • Partial application [Caseau & Laburthe 95]

  29. Comparison • Theoretical results • Unique fixpoint semantics • Modelling power • Time and space complexity • Pruning power • Experimental results

  30. Unique fixpoint semantics Time-tables YES arc-consistency (bounds) Disjunctive constraints YES arc-consistency (bounds) Habographs YES arc-consistency (bounds) Energetic resources YES arc-consistency (bounds) Energetic rules NO [Baptiste 95] Edge finding [CP90/94] YES proof in [Pinson 88] Edge finding [N93] YES proof in [Nuijten 94] Task intervals [CL94] NO [Baptiste & Le Pape 95]

  31. Habographs Disjunctive constraints Energetic resources Task intervals Explicit time-tables Energetic rules Edge finding Modelling power (as of today)

  32. Time and space complexity Time-tables O(n*h) O(n2) Incr. O(h) O(n) Disjunctive constraints O(n2) Incr. O(n) Habographs O(n*(h/d)2) Incr. O((h/d)2) Energetic resources O(n*h/d) O(n2) Incr. O(h/d) O(n) Energetic rules O(n3) O(n) Edge finding [CP90/94] O(n2) O(n*log(n)) O(n) Edge finding [N93] O(n2) O(n) Task intervals [CL94] O(n3) Incr. O(n2)

  33. Edge finding + not-first/not-last Habographs Edge finding + disjunctive Energetic rules Energetic resources Edge finding (basic) Disjunctive constraints Explicit time-tables Pruning power (U)

  34. Experiments (10/80) MT06 CAR1 CAR2 CAR3 CAR4 CAR5 CAR6 CAR7 CAR8 MT10 Edge finding [Nuijten et al 93] Number of fails CPU time Energetic reasoning [Erschler et al 91] Number of fails CPU time 215 210 25

More Related