1 / 30

The investigation of charge ordering in colossal magnetoresistance

The investigation of charge ordering in colossal magnetoresistance. Shih-Jye Sun Department of Applied Physics National University of Kaohsiung. 2005/9/30 in NCKU. Colossal Magnetoresistance. La 1-x (Ca,Sr…) x MnO 3. Phase diagram of CMR. Urushibara et al (1995). Cheong and Hwang (1999).

Download Presentation

The investigation of charge ordering in colossal magnetoresistance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The investigation of charge ordering in colossal magnetoresistance Shih-Jye Sun Department of Applied Physics National University of Kaohsiung 2005/9/30 in NCKU

  2. Colossal Magnetoresistance La1-x(Ca,Sr…)xMnO3

  3. Phase diagram of CMR Urushibara et al (1995) Cheong and Hwang (1999)

  4. Mn3+ Mn3+ Mn3+ Mn3+ Mn4+ Mn4+ eg eg eg (1) (1) (2) eg eg eg t2g t2g t2g t2g t2g t2g (A) (2) O2- (2) (3) 2p (B) O2- (3) 2p (C) O2- (3) (1) Double exchange mechanism 2p

  5. John Teller distortion

  6. TC(TCO or TN) χ TC T The motivation La1-xCaxMnO3 PI para-insulator(PI) Temp I TC TCO FI CO II TN TCO CO AFM III x 0.5<x<0.85 x~0.2 Susceptibility instability From region I to II and II to III

  7. Hamiltonian: (kinetic energy) (inter-Coulomb repulsion) (on-site Coulomb repulsion) Theoretical formulas derivation Itinerant spin Local spin

  8. Hamiltonian in momentum representation

  9. Greens function for susceptibilities Charge-charge susceptibility

  10. Spin-spin susceptibility

  11. Equation of motion method (1) (2) (3) (1)

  12. (2)

  13. Random Phase Approximation Wick’s theorem Fermi-Dirac distribution

  14. Spin dependent in PI state

  15. PI to CO transition Similarly, for spin-spin susceptibility

  16. (spin dependent in PI) PI to AFM In CO state Mn+3 Mn+4

  17. CO to AFM x TC TN 0.55 222 156 0.60 260 143 0.65 265 130 0.70 250 125 0.75 215 113 0.80 180 106 0.85 130 102 Substituting to Experimental data To determine interaction relations Cheong and Hwang (1999)

  18. Results and discussion Reflection different transitions

  19. Consistent with John Teller distortion More distortion non-symmetry symmetry

  20. Charge gaps are depressed by U

  21. Charge gap fluctuation The competition between HV and HU

  22. Conclusions • Substituting experimental critical transition temperatures of TCOs and TNs to charge-charge and spin-spin susceptibility functions offer the determination of the inter-Coulomb repulsions and charge gaps for x > 0.5, respectively. • These Inter-Coulomb repulsions increase with x increasing but not in linear. • In small on-site repulsion U the phase transitions only occur pare-insulator to charge-ordering transitions and in large U only occur para-insulator to antiferromagnetic transitions. The consequential phase transitions for para-insulator to charge-ordering following charge-ordering to antiferromagnetic transitions occur in a moderate U. In charge ordering states the charge gaps are opened and are depressed by U. • The scale of the charge gap increases linearly with x increasing excluding a small range of deviation. This deviation comes from the charge gap fluctuation according to the competition between inter-Coulomb and on-site Coulomb interactions.

  23. Thanks for your attendance!!

More Related