1 / 61

Peter Mészáros Pennsylvania State University

Astrophysical Sources of TeV to GZK neutrinos. Peter Mészáros Pennsylvania State University. Energy (eV ). CMB. 1 TeV. Radio. Visible. Flux. 400 microwave photons per cm 3. GeV g -rays. [slides: Halzen 03]. n. / / / / / / / / / / / / / / / / /.

kasie
Download Presentation

Peter Mészáros Pennsylvania State University

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Astrophysical Sources of TeV to GZK neutrinos Peter Mészáros Pennsylvania State University

  2. Energy (eV) CMB 1 TeV Radio Visible Flux 400 microwave photons per cm3 GeV g-rays [slides: Halzen 03]

  3. n / / / / / / / / / / / / / / / / / TeV sources! cosmic rays

  4. Photons above 1 TeV do not reach us from • beyond 10-30 Milion light-years, due to their • interaction with IR diffuse background light. • Photons above103 TeV energy do not reach • us from the edge of our galaxy because of interaction with the microwave background. g + gCMB,IR e++ e-

  5. Cosmic Ray spectrum Extragalactic flux sets scale for many accelerator models Atmospheric neutrinos

  6. CR spectrum GZK cutoff or not ?

  7. [Slides: Waxman 04]

  8. Acceleration to 1021eV? ~102 Joules ~ 0.01 MGUT • dense regions with exceptional • gravitational force creating relativistic • flows of charged particles, e.g. • coalescing black holes/neutron stars • dense cores of exploding stars • supermassive black holes

  9. CR acceleration

  10. For a few seconds, a GRB dominates the gamma-ray brightness of the entire Universe Fig. Credit: Tyce DeYoung

  11. [Waxman 95] [Frail et al 00]

  12. GZK Sources • Sources: GRB √ ; AGN.... #? • Rate: RGRB (z=0)~ 0.5 Gpc-3 yr-1 ~ 0.5 10-3 (D/100 Mpc)-3 yr-1 • But, arrival time dispersion: tdis~3 107yr (B/10-9 G)2 (B/10 Mpc) (D/100MPC)2(Ep/1020 eV)-2 • NGRB(>Ep, <D) ~ R. tdisp ~104 B-92 B10 D1002 Ep202 • GZK event rate: ~ 1 /Km2 /100 yr)  [Waxman 95]

  13. CR data vs. model [slide: Waxman 05]

  14. (see talk by S. Coutu)

  15. Next :how and where areneutrinobeams made ?? Lab [ Halzen 02 ]

  16. black hole radiation enveloping black hole

  17. Irrespective of the cosmic-ray sources, some fraction will produce • pions (and neutrinos) as they escape from the acceleration site • through hadronic collisions with gas • through photoproduction with ambient photons • Cosmic rays interact with interstellar light/matter even if they • escape the source Sources: • Transparent: protons (EeV cosmic-rays) ~ photons (TeV point sources) ~neutrinos • Obscured sources • Hidden sources Unlike gammas, neutrinos provide unambiguous evidence for cosmic ray acceleration!

  18. Detection principle  Cherenkov light isobserved p  Neutrinopassesthrough the earth Interacts near the detector to produce a muon   + N +X

  19. Cherenkov light from muons and cascades muon cascade • Maximum likelihood method • Use expected time profiles of photon flight times Reconstruction

  20. Nevents ~ Pn -->Area Time  Detection Probability:   ntarget Range ~ 10-4 for 100 TeV neutrinos Neutrino flux required to observe N events: 5x10-12 Area (km2) Time (yr) erg cm2/s  = Nevents

  21. ANTARTICA, South Pole Station: Amanda & IceCube Skiway (for planes!) AMANDA South Pole Dome IceCube Aerial view of South Pole 1 km

  22. Building AMANDA: The Optical Module and the String

  23. The AMANDA Detector • Hot-water-drill 2km-deep holes & insert strings of PMTs in pressure vessels. • AMANDA-B10: 302 PMTs, completed in 1997 • Old & new A-B10 results presented • AMANDA-II: 677 PMTs, completed in 2000 • Prelimin. results presented • AMANDA challenges: • Natural medium • Remote location • Unfettered bkgd. source • Prototype detector AMANDA-II

  24. IceTop AMANDA South Pole Runway 1400 m 2400 m IceCube • 80 Strings • 4800 PMT • Instrumented volume: 1 km3 (1 Gton) • IceCube is designed to detect neutrinos of all flavors at energies from 107 eV (SN) to 1020 eV

  25. neutrinos associated with the source of the cosmic rays? even neutrons do not escape neutrons escape

  26. Neutrino ID (solid)Energy and angle (shaded) Neutrino flavor • Filledarea: particle id, direction, energy • Shaded area: energy only

  27. KM3NeT • EU collaboration • Site :Mediterranean Sea • based on: NESTOR, • NEMO, ANTARES • Km3 water Cherenkov detector • Deployment approx. 2010 • Complement ICECUBE: sc,abs~(100,10) H20, sc,abs~(20,100) Ice • Northern site: at lower E , complementary sky coverage

  28. p + ,p→UHE, • If protons present in (baryonic) jet → p+ Fermi accelerated (as are e-) • p, → → ,→e,,e,(-res.: Ep E  0.3 GeV2 in jet frame) → E,br  1014 eV for MeV s (int. shock) → E,br  1018 eV for 100 eV s (ext. rev. sh.)ICECUBE • →0 →2 →  cascade GLAST, ACTs.. (Waxman-Bahcall 1997;99; Boettcher-Dermer 1998; 00; ) • Test hadronic content of jets (are they pure MHD/e , or baryonic…?) • Test acceleration physics (injection effic., e, B..) • Test scattering length (magnetic inhomog. scale?..or non-Fermi?..) • Test shock radius:  cascade cut-off: ~ GeV (internal shock) ; ~ TeV (ext shock/IGM) → photoncut-off: diagnostic for int. vs. ext-rev shock

  29. UHE  in GRB6 possible collapsar GRB -sites 1,2 e- capt p,n • 1) at collapse, make GW + thermal s (MeV) • 2)  If jet outflow is baryonic, have p,n → p,n relative drift, pp/pn collisions → inelastic nuclear collisions → VHE  (GeV) • 3 Int. shocks while jet is inside  can accel. protons → p, pp/pn collisions → UHE  (TeV) • 4 Int. shocks outside  accel. protons → p collisions → UHE  (100 TeV) • 5) ← Ext. rev. shock → EeV  (1018 eV) • 6) If supranova shell present outside (SN ocurred >2 days before GRB?) → p, pp of jet protons on shell targets → UHE  (> TeV) [..now constrained] 3,4 p, pp 5,6 p

  30. “Hadronic” GRB Fireballs:Thermal p,n decoupling → VHE, • p,n in fireball move together while tpn < texp (rad. acts on p, elastic scatt. couples p,n) • p,n decouple when tpn>texp , where pn1, vrel c, pn inelastic; this occurs for  >  ~400 (Derishev etal 99; Bahcall,Meszaros 00; Fuller etal 00) • Inelastic pn ±,e±,e , → 0 → 2 • :5-10 GeV → ICECUBE? det @ z1, R7/yr from all GRB, but only if larger PMT density • -rays: 02 , → GLAST,  10 GeV, detect @ z < 0.1 p n p n rdec (Bahcall & Meszaros 2000 PRL 85:1362); Lemoine 2002; Beloborodov, 2002

  31. While jet is inside progenitor:

  32. (2) Jet inside star:GRB , Precursor • Jet propagating through progenitor, BEFORE emerging from stellar envelope, can have int. shocks which accel. p+ → p on unobserved X-rays , → ±,  pp, pn on stellar envelope → ±,    fewTeV neutrinoprecursor • If progenitor has H-layer R1012 cm(BSG) → Rate(  , TeV )prec > Rate(  , 100 TeV )int.shock ( easier to detect in ICECUBE ) • but,if WR (He core), R1011 cm → Rate(  , TeV) prec < Rate(  , 100 TeV ) int.shock →test progen. size (e.g. @ high z : popIII?) • If jet DOES NOT escape ⇒ “choked” jet, s escape, s don’t→ “hidden  source” • If jet break-out:→photon flashes (3)  Blue - spectrum: ~100 TeV p,→from shocks outside star Meszaros , Waxman 01 PRL 17 1102 H WR Razzaque,Mészáros, Waxman 03 PRD 68, 3OO1)

  33. When jet is outside progenitor star:GRB internal & external shocks

  34. s from p in internal & external shocks in GRB • Shocks accelerate p+ (as well as the e- which produce MeV ) • -res.: E’p E’ 0.3GeV2 in comoving frame, in lab: → Ep ≥ 3x106Γ22 GeV → E≥ 1.5x102Γ22 TeV • Internal shock p,MeV → ~100 TeV s • External shock p,UV → ~ 0.1-1 EeV s • Diffuse flux: detect in km3 Waxman, Bahcall 97 PRL

  35. GRB 030329: precursor(& pre-SN shell?) with ICECUBE Burst of L1051 erg/s, ESN 1052.5 erg, @ z0.17, 68o Prob.of  interaction Flux of  Razzaque, Mészáros, Waxman 03 PRD 69, 23001

  36. Core collapse SN : slow jets? • Maybe all core coll. (or Ib/c) SN resemble (watered-down) GRB? • Evidence for asymmetric expansion of c.c. (Ib/c) SNR: slow jets Γ~ few ? • If so, accel protons while jet inside star, p→πμ→μ (TeV) • Diffuse flux: might be interesting (if 100% SNII make jets), but, more interestingly: • individual SN in nearby (2-3 Mpc) gals, e.g. M82, NGC253,  detectable(if have slow jets), at a rate ~ 1 SN/few yr, fluence ~ 100 up-muons/SN, negligible background, in km3 detectors - ICECUBE, KM3NeT Razzaque, Mészáros, Waxman ‘04, PRL 93, 181101; (err: ‘05, PRL 94, 9903) Ando, Beacom (Kaons from pp - astro-ph/0502521)

  37. Diffuse UHE  from pop.III collapse • At z~5-30(?) pop.III , M~ 30-300 M , core coll →BH+ accr. • Buried jets→p→  , → -bursts (but: dep. on stellar rot.rate) • Eiso~1054-1056 (?) erg (dep. on BH mass, dM/dt) • Detect high z star formation, primordial IMF • Recent (8/04) : can constrain w. AMANDAlatest results: → Eiso~1056 erg only for ≤1%, → Eiso≥1054 erg for ≤ 50% ! Recent AMANDA u.l. Schneider, Guetta, Ferrara aph/0201342

  38. AGN as UHE  sources • Big brother of GRB: massive BH (107-108 Msun ) fed by an accretion disk → jet – • But, jet jet,agn ~10-20 (while grb ~ 102-103 ) • UV photons from disk; in addition, line clouds provide extra photons (+back-scatter) • Typical (“leptonic”) model: SSC (sync-self-compton); SEC(sync-exter.compton)

  39. Radio-loud blazars (jet nearly head-on):Mrk 501 • 1997 flare: TeV; (GeV: upper lim only w EGRET) • GeV detected sometime @ quiescence • ←Typical “astrophysical” SSC or ESC “leptonic” jet  model fit • But: competing “hadronic” jet  model fits 

  40. Radio-loud hadronic Blazar models(PSB-proton synchrotron blazar - -ray spectrum from cascades) • Full : synchrotron  SED (target photons) • Dash: p-sync. casc.; Dash-3 dot: ±-sync. casc; Dots: 0 casc; Dash-dot: ± casc (Muecke, et al, Apph, astro-ph/0206164 )

  41. Mrk 501 : protypical HBL • a)  PSB: Quiet state  • b)  PSB: Flare state   e-sync  targets + p-sync  + p, casacdes,  casacdes & sync (Muecke et al, a-ph/0206164) • c) → LEP:Flare state  → e-sync  + e-Inv. Compton scatt (Ghisellini et al, e.g. A&A 386, 833 (2002) etc – “standard” astrophysical. picture

More Related