1 / 34

Statistical Inference, Multiple Comparisons and Random Field Theory

Statistical Inference, Multiple Comparisons and Random Field Theory. Andrew Holmes SPM short course, May 2002. Overview…. …a voxel by voxel hypothesis testing approach reliably identify regions showing a significant experimental effect of interest Assessment of statistic images

kasie
Download Presentation

Statistical Inference, Multiple Comparisons and Random Field Theory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Statistical Inference, Multiple Comparisonsand Random Field Theory Andrew Holmes SPM short course, May 2002

  2. Overview… …a voxel by voxel hypothesis testing approach • reliably identify regions showing a significant experimental effect of interest • Assessment of statistic images • multiple comparisons • random field theory • smoothness • spatial levels of inference & power • false discovery rate later... • Generalisability, random effects & population inference • inferring to the population • group comparisons • Non-parametric inference  later...

  3. image data parameter estimates designmatrix kernel • General Linear Model • model fitting • statistic image realignment &motioncorrection random field theory smoothing normalisation StatisticalParametric Map anatomicalreference corrected p-values

  4. condition 1 condition 2 Statistical Parametric Mapping… – parameter estimate variance estimate statistic image orSPM = voxel by voxelmodelling

  5. Null hypothesis H test statistic null distributions Hypothesis test control Type I error incorrectly reject H test level Pr(“reject” H | H)  test size Pr(“reject H | H) p –value min a at which Hrejected Pr(T t | H) characterising “surprise” t –distribution, 32 df. F –distribution, 10,32 df. Classical hypothesis testing…

  6. Multiple comparisons… t59 • Threshold at p ? • expect (100  p)% by chance • Surprise ? • extreme voxel values • voxel level inference • big suprathreshold clusters • cluster level inference • many suprathreshold clusters • set level inference • Power & localisation • sensitivity • spatial specificity p = 0.05 Gaussian10mm FWHM (2mm pixels)

  7. Multiple comparisons terminology… • Family of hypotheses • Hk k = {1,…,K} • H = Hk • Familywise Type I error • weak control – omnibus test • Pr(“reject” HH)  • “anything, anywhere”? • strong control – localising test • Pr(“reject” HW HW)   W: W   & HW • “anything, & where”? • Adjusted p–values • test level at which reject Hk

  8. Threshold u  tk > u reject Hk reject any Hk reject H reject H if tmax > u Valid test weak control Pr(Tmax > uH)  strong control since W  Pr(TWmax > uHW)   Adjusted p –values Pr(Tmax > tkH) p = 0.05 p = 0.0001 p = 0.0000001 Simple threshold tests… u

  9. “The” Bonferroni inequality Carlo Emilio Bonferroni (1936) For any set of events Ak : Bonferroni correction Ak : correctly “accept” Hk Tk < u & Hk Assess Hk at level ' correction ' =  / K Adjusted p –values min(1,Kpk ) Conservative for correlated tests independent: K tests some dependence : ? tests totally dependent: 1 test ua = -1(1-/K) The “Bonferroni” correction… 5mm 10mm 15mm

  10. Consider statistic image as lattice representation of a continuous random field Use results from continuous random field theory SPM approach: Random fields…  lattice represtntation

  11. Topological measure of excursion set Au Au = {x R3 : Z(x) > u} # components - # “holes” Single threshold test large u, near Tmax Euler char.  #local max Expected Euler char p–value Pr(Zmax > u )  Pr((Au)> 0 ) E[(Au)] single threshold test u s.t. E[(Au)] =  Euler characteristic…

  12. E[(Au)] () ||(u 2 -1) exp(-u 2/2) / (2)2  largesearch region R3 ( volume || smoothness Au  excursion set Au = {x R3 : Z(x) > u} Z(x) Gaussian random field x R3+ Multivariate Normal Finite Dimensional distributions + continuous + strictly stationary + marginal N(0,1) + continuously differentiable + twice differentiable at 0 + Gaussian ACF(at least near local maxima) Au  Expected Euler characteristic…

  13. Smoothness || variance-covariance matrix of partial derivatives (possibly location dependent) Point Response Function PRF Full Width at Half Maximum FWHM Gaussian PRF  – kernel var/cov matrix ACF 2  = (2)-1 FWHM f = (8ln(2)) fx 0 0  = 0 fy 0 1 0 0 fz 8ln(2) ignoring covariances || = (4ln(2))3/2 / (fx fy fz) Resolution Element (RESEL) Resel dimensions (fx fy fz) R3() = () / (fx fy fz) if strictly stationary E[(Au)] = R3() (4ln(2))3/2 (u 2 -1) exp(-u 2/2) / (2)2  R3() (1 – (u))for high thresholds u Smoothness, PRF, resels... 

  14. Y = X  +  ^  Component fields… voxels ? ? =  + parameters design matrix errors data matrix scans s2 variance parameterestimates • estimate   residuals  estimated variance = estimatedcomponentfields “Image regression”

  15. Smoothness estimation… • Smoothness • from standardised residuals • empirical derivatives at each voxel • Resels per voxel (RPV) – an “image” of smoothness • correction for estimation of variance field 2 • function of degrees of freedom • covariances often ignored • Euler Characteristics • using discrete methods

  16. Au  Unified p-values… • General form for expected Euler characteristic • 2, F, & t fields • restricted search regions •D dimensions • E[(WAu)] = S Rd (W)rd (u) Rd (W):d-dimensional Minkowski functional of W – function of dimension, spaceWand smoothness: R0(W) = (W) Euler characteristic of W R1(W) = resel diameter R2(W) = resel surface area R3(W) = resel volume rd (W):d-dimensional EC density of Z(x) – function of dimension and threshold, specific for RF type: E.g. Gaussian RF: (strictly stationary &c…) r0(u) = 1- (u) r1(u) = (4 ln2)1/2 exp(-u2/2) / (2p) r2(u) = (4 ln2) exp(-u2/2) / (2p)3/2 r3(u) = (4 ln2)3/2 (u2 -1) exp(-u2/2) / (2p)2 r4(u) = (4 ln2)2 (u3 -3u) exp(-u2/2) / (2p)5/2

  17. Primary threshold u examine connected components of excursion set Suprathreshold clusters Reject HW for clusters of voxels W of size S > s Localisation (Strong control) at cluster level increased power esp. high resolutions (f MRI) Thresholds, p –values Pr(Smax > s H )  Nosko, Friston, (Worsley) Poisson occurrence (Adler) Assumme form for Pr(S=s|S>0) Suprathreshold cluster tests… 5mm FWHM 10mm FWHM 15mm FWHM (2mm2 pixels)

  18. n=12 n=82 n=32 Levels of inference… voxel-level P(c  1 | n  0, t  4.37) = 0.048 (corrected) P(t 4.37) = 1 - {4.37} < 0.001 (uncorrected) omnibus P(c7 | n  0, u  3.09) = 0.031 set-level P(c  3 | n  12, u  3.09) = 0.019 Parameters u - 3.09 k - 12 voxels S - 323 voxels FWHM - 4.7 voxels D - 3 cluster-level P(c  1 | n  82, t  3.09) = 0.029 (corrected) P(n  82 | t  3.09) = 0.019 (uncorrected)

  19. Summary: Levels of inference & power

  20. SPM results...

  21. SPM results...

  22. SPM results...

  23. SPM results...

  24. Model fit & assumptions valid distributional results Multivariate normality of component images Strict stationarity (pre SPM99) of component images homogeneous spatial structure Smoothness smoothness » voxel size lattice approximation smoothness estimation practically FWHM 3 VoxDim otherwise conservative (voxel level) lax (spatial extent) spatial smoothing? temporal smoothing? Assumptions…

  25. Random effects & variance components • Fixed effects • Are you confident that a new observation from any of subjects 1-3 will be greater than zero? • Yes!using within-subjects variance • infer for these subjects – case study • Random effects • Are you confident that a new observation from a new subject will be greater than zero? • No!using between-subjects variance • infer for any subject – population

  26. ^ 1 ^  ^ 2 ^  ^ 3 ^  ^ 4 ^  ^ 5 ^  ^ 6 ^  Multi-subject analysis…? estimated mean activation image p < 0.001 (uncorrected) SPM{t} — ^ •– c.f. 2 / nw – c.f. p < 0.05 (corrected) SPM{t}

  27. ^ 1 ^  ^ 2 ^  ^ 3 ^  ^ 4 ^  ^ 5 ^  ^ 6 ^  Two-stage analysis of random effect… level-one(within-subject) level-two(between-subject)  an estimate of the mixed-effects model variance 2+2/w  ^ variance 2 (no voxels significant at p < 0.05 (corrected))  — ^ •– c.f. 2/n = 2 /n + 2 / nw  – c.f.  p < 0.001 (uncorrected)  SPM{t} contrast images timecourses at [ 03, -78, 00 ]

  28. Two stage random effects group comparison vs. two-sample t-test 12 subjects level-one(within-subject) contrast images level-two(between-subject)

  29. Multi-stage multi-level modelling… estimated contrasts from level-1 fits, level-2 model & level-2 contrasts level-1 data, model & contrast(s) parameter estimation inference level 2 estimated contrasts and residual variance level 2(population)inference

  30. Hypothesis testing !? • Why test? • reliability  genuine effects  integrity of research (hopefully) • The fallacy… • point null hypothesis(no change) • things are never the same! (always some small chance change) • given enough observations can always reject null hypothesis ! • fMRI !?(lots of observations) …testing, rather than estimating • significant  important !? …and: “absence of evidence isnotevidence of absence” !?

  31. Ch5 Ch4 Multiple Comparisons,& Random Field Theory Worsley KJ, Marrett S, Neelin P, Evans AC (1992) “A three-dimensional statistical analysis for CBF activation studies in human brain”Journal of Cerebral Blood Flow and Metabolism12:900-918 Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1995) “A unified statistical approach for determining significant signals in images of cerebral activation”Human Brain Mapping 4:58-73 Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994)“Assessing the Significance of Focal Activations Using their Spatial Extent”Human Brain Mapping 1:214-220 Cao J (1999)“The size of the connected components of excursion sets of 2, t and F fields”Advances in Applied Probability (in press) Worsley KJ, Marrett S, Neelin P, Evans AC (1995)“Searching scale space for activation in PET images”Human Brain Mapping 4:74-90 Worsley KJ, Poline J-B, Vandal AC, Friston KJ (1995)“Tests for distributed, non-focal brain activations”NeuroImage 2:183-194 Friston KJ, Holmes AP, Poline J-B, Price CJ, Frith CD (1996)“Detecting Activations in PET and fMRI: Levels of Inference and Power”Neuroimage 4:223-235

  32. index • overview • multiple comparisons • random field theory • random effects • hypothesis testing fallacy

More Related