1 / 22

例 3 :外界センサー 人間

例 3 :外界センサー 人間. モーションキャプチャ: 運動データ 床半力 外力 逆運動学計算. 例 3 :外界センサー 人間. 動作画像. モーションキャプチャー. モーションキャプチャー. 逆運動学. 逆力学. 例 3 :外界センサー 人間. 15 リンク  [Nakamura et al. 2000] , [Venture et al. 2008] 34 自由度 (DOF) マーカーから逆運動学計算 →関節角度、速度、加速度 [Yamane et al. 2003]. 例 3 :外界センサー 人間 モデリング・最少パラメータ.

kateb
Download Presentation

例 3 :外界センサー 人間

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 例3:外界センサー人間 • モーションキャプチャ: • 運動データ • 床半力 • 外力 • 逆運動学計算

  2. 例3:外界センサー人間 動作画像 モーションキャプチャー モーションキャプチャー 逆運動学 逆力学

  3. 例3:外界センサー人間 • 15 リンク [Nakamura et al. 2000], [Venture et al. 2008] • 34 自由度(DOF) • マーカーから逆運動学計算 →関節角度、速度、加速度 [Yamane et al. 2003]

  4. 例3:外界センサー人間モデリング・最少パラメータ例3:外界センサー人間モデリング・最少パラメータ • Standard parameters = full set of inertial parameters • Base parameters = identifiable parameters from inverse dynamics only (YB of full rank) 15

  5. 同定のため適当な動作は? • リグレサーの状件数

  6. Cross Validation

  7. 例3:外界センサー人間・RT同定 • モーションキャプチャ(motion analysis) • 床半力(Kistler) • Screen for visual feedback • PC for motion acquisition • PC for real-time computation

  8. 例3:外界センサー人間・RT同定 • From motion capture (RT IK computations) and force-plates (RT generalized effort computations) base and SP are identified with RT method (recursive algorithm)

  9. Geometric scaling and initial SP • Measure the geometric parameters of the model from motion capture: automatic scaling from marker positions • Estimate the initial SP f ref from geometric parameters and database of human body. Initial geometric parameters and SP identification for 3 candidates with 3 different morphologies: 1.73m 58Kg, 1.62m 54Kg and 1.76m 76.3Kg

  10. Persistent Exciting trajectories • Using RT color changes to specify the links not yet completely identified, results are obtained in a shorter time with more accuracy.

  11. Real time identification of the human dynamics Persistent Exciting trajectories

  12. 同定結果 • Comparison of some identified parameters with literature [Young et al. 1983]

  13. 応用:スポーツトレーニング • 33 year old female • Stanton marathon training program in preparation for the 2009 Tokyo Marathon. • Training program = 16 week program • 5-days a week running schedule • Gradually increased running distance from 20km/week to 80km/week in the peak 13th week, then tapering in the final 3 weeks before the race. • Prior to that subject runs 25km/week • Record on a weekly basis / several sessions omitted

  14. 応用:スポーツトレーニング

  15. 例4:関節粘弾性の同定 • Biomechanics developed methodologies for measuring various dynamics properties of the human body • Determination of standard values of joints’ visco-elastic properties based on well calibrated measuring equipments and averaging of data of many subjects. • Equipment need mechanical stiffness and accuracy ⇒heaviness and bulkiness (dynamometer) ⇒not applicable to everyone, specially to people under rehabilitation and medical treatments. ⇒System to measure patient-specific visco-elastic properties of limb joints without pain and constraints highly required.

  16. 例4:関節粘弾性の同定 • Joint modelling • Model of visco-elastic properties adapted from biomechanics most popular model +Identification of human joint passive dynamics, Proc. of the IEEE Int. Conf. on Robotics and Automation, pp 2960-2965, 2006. +Identification of Human Limb Visco-Elasticity Using Robotics Methods to Support the Diagnosis of Neuromuscular Diseases, Int. J. of Robotic Research (to be publiched)

  17. 神経病の診断

  18. 実験結果 • Possible discrimination of patients 21

  19. 終わり • 参考論文 • W. Khalil and E. Dombre. Modeling, identification and controlof robots. Hermès Penton, London-U.K, 2002. • Y. Nakamura, Advanced Robotics: Redundancy and Optimization,Addison-Wesley Longman Publishing Co., Inc, 1990. • G. Venture, K. Ayusawa, and Y. Nakamura, “Motion capture basedidentification of human inertial parameters,” in Proc. IEEE/EMBS Int.Conf. on Eng. in Medicine and Biology, 2008, pp. 4575–4578. • G. Venture, K. Ayusawa, and Y. Nakamura, “Dynamics identificationof humanoid systems,” in Proc. CISM-IFToMM Symp. on RobotDesign, Dynamics, and Control (ROMANSY), 2008, pp. 301–308. • Y. Fujimoto, S. Obata, and A. Kawamura, “Robust biped walking withactive interaction control between foot and ground,” in Proc. of theIEEE Int. Conf. on Robotics and Automation, 1998, p. 2030˝U2035. • K. Yoshida, D.N. Nenchev, and M. Uchiyama, “Moving base roboticsand reaction management control,” in Proc. of the Seventh Int. Symp.of Robotics Research, 1995, p. 100˝U109. • H. Mayeda, K. Osuka, and A. Kangawa, “A new identification methodfor serial manipulator arms,” in Proc. IFAC 9th World Congress, 1984,pp. 2429–2434. • C.G. Atkeson, C.H. An, and J.M. Hollerbach, “Estimation of inertialparameters of manipulator loads and lunks,” Int. J. of RoboticResearch, vol. 5, no. 3, pp. 101–119, 1986. • H. Kawasaki, Y. Beniya, and K. Kanzaki, “Minimum dynamicsparameters of tree structure robot models,” in Int. Conf. of IndustrialElectronics, Control and Instrumentation, 1991, vol. 2, pp. 1100–1105. • W. Khalil and F. Bennis, “Symbolic calculation of the base inertialparameters of closed-loop robots,” Int. J. of Robotics Research, vol.14(2), pp. 112–128, April 1995. • M. Gautier, “Numerical calculation of the base inertial parameters,”J. of Robotic Systems, vol. 8(4), pp. 485–506, 1991. • K. Ayusawa, G. Venture, and Y. Nakamura, “Inertial parametersidentifiability of humanoid robot based on the baselink equation ofmotion,” Proc. of the Conf. on Robotics and Mechatronics, 2P1-F09,2008, (in Japanese).

More Related