570 likes | 589 Views
This study explores improved moves for truncated convex models in order to achieve accurate and efficient Maximum A Posteriori (MAP) estimation. The research focuses on convex models with random variables and edges defining the neighborhood structure. The text outlines move space exploration, graph construction, analysis, and results related to solving the problem efficiently and accurately. It highlights the challenges faced in move-making literature and proposes solutions to address them.
E N D
Improved Moves for Truncated Convex Models M. Pawan Kumar Philip Torr
Aim Efficient, accurate MAP for truncated convex models V1 V2 … … … … … … … … … … … … … … … … … Vn Random Variables V = { V1, V2, …, Vn} Edges E define neighbourhood
Aim Accurate, efficient MAP for truncated convex models lk ab;ik ab;ik = wab min{ d(i-k), M } li wab is non-negative d(.) is convex Vb b;k a;i Va Truncated Linear Truncated Quadratic ab;ik ab;ik i-k i-k
Motivation Low-level Vision min{ |i-k|, M} • Smoothly varying regions Boykov, Veksler & Zabih 1998 • Sharp edges between regions Well-researched !!
Things We Know • NP-hard problem - Can only get approximation • Best possible integrality gap - LP relaxation Manokaran et al., 2008 • Solve using TRW-S, DD, PP Slower than graph-cuts • Use Range Move - Veksler, 2007 None of the guarantees of LP
Real Motivation Gaps in Move-Making Literature Chekuri et al., 2001 2 2 + √2 O(√M) Multiplicative Bounds
Real Motivation Gaps in Move-Making Literature Boykov, Veksler and Zabih, 1999 2 2 2 + √2 2M O(√M) - Multiplicative Bounds
Real Motivation Gaps in Move-Making Literature Gupta and Tardos, 2000 2 2 2 + √2 4 O(√M) - Multiplicative Bounds
Real Motivation Gaps in Move-Making Literature Komodakis and Tziritas, 2005 2 2 2 + √2 4 O(√M) 2M Multiplicative Bounds
Real Motivation Gaps in Move-Making Literature 2 2 2 + √2 2 + √2 O(√M) O(√M) Multiplicative Bounds
Outline • Move Space • Graph Construction • Sketch of the Analysis • Results
Move Space • Initialize the labelling • Choose interval I of L’ labels • Each variable can • Retain old label • Choose a label from I • Choose best labelling Va Vb Iterate over intervals
Outline • Move Space • Graph Construction • Sketch of the Analysis • Results
Two Problems • Choose interval I of L’ labels • Each variable can • Retain old label • Choose a label from I • Choose best labelling Large L’ => Non-submodular Non-submodular Va Vb
First Problem Submodular problem Va Vb Ishikawa, 2003; Veksler, 2007
First Problem Non-submodular Problem Va Vb
First Problem Submodular problem Va Vb Veksler, 2007
First Problem am+1 bm+1 am+2 bm+2 am+2 bm+2 an bn t Va Vb
First Problem am+1 bm+1 am+2 bm+2 am+2 bm+2 an bn t Va Vb
First Problem am+1 bm+1 am+2 bm+2 am+2 bm+2 an bn t Va Vb
First Problem am+1 bm+1 am+2 bm+2 am+2 bm+2 an bn t Va Vb
First Problem am+1 bm+1 am+2 bm+2 am+2 bm+2 an bn t Va Vb Model unary potentials exactly
First Problem am+1 bm+1 am+2 bm+2 am+2 bm+2 an bn t Va Vb Similarly for Vb
First Problem am+1 bm+1 am+2 bm+2 am+2 bm+2 an bn t Va Vb Model convex pairwise costs
First Problem Wanted to model ab;ik = wab min{ d(i-k), M } For all li, lk I Have modelled ab;ik = wab d(i-k) For all li, lk I Va Vb Overestimated pairwise potentials
Second Problem • Choose interval I of L’ labels • Each variable can • Retain old label • Choose a label from I • Choose best labelling Non-submodular problem !! Va Vb
Second Problem - Case 1 s ∞ ∞ am+1 bm+1 am+2 bm+2 an bn t Va Vb Both previous labels lie in interval
Second Problem - Case 1 s ∞ ∞ am+1 bm+1 am+2 bm+2 an bn t Va Vb wab d(i-k)
Second Problem - Case 2 s ∞ ub am+1 bm+1 am+2 bm+2 an bn t Va Vb Only previous label of Va lies in interval
Second Problem - Case 2 s ∞ ub M am+1 bm+1 am+2 bm+2 an bn t Va Vb ub : unary potential of previous label of Vb
Second Problem - Case 2 s ∞ ub M am+1 bm+1 am+2 bm+2 an bn t Va Vb wab d(i-k)
Second Problem - Case 2 s ∞ ub M am+1 bm+1 am+2 bm+2 an bn t Va Vb wab ( d(i-m-1) + M )
Second Problem - Case 3 am+1 bm+1 am+2 bm+2 an bn t Va Vb Only previous label of Vb lies in interval
Second Problem - Case 3 s ∞ ua M am+1 bm+1 am+2 bm+2 an bn t Va Vb ua : unary potential of previous label of Va
Second Problem - Case 4 am+1 bm+1 am+2 bm+2 an bn t Va Vb Both previous labels do not lie in interval
Second Problem - Case 4 s ua ub Pab M M am+1 bm+1 ab am+2 bm+2 an bn t Va Vb Pab : pairwise potential for previous labels
Second Problem - Case 4 s ua ub Pab M M am+1 bm+1 ab am+2 bm+2 an bn t Va Vb wab d(i-k)
Second Problem - Case 4 s ua ub Pab M M am+1 bm+1 ab am+2 bm+2 an bn t Va Vb wab ( d(i-m-1) + M )
Second Problem - Case 4 s ua ub Pab M M am+1 bm+1 ab am+2 bm+2 an bn t Va Vb Pab
Graph Construction Find st-MINCUT. Retain old labelling if energy increases. am+1 bm+1 am+2 bm+2 an bn t Va Vb ITERATE
Outline • Move Space • Graph Construction • Sketch of the Analysis • Results
Va Vb Va Vb Previous labelling f’(.) Global Optimum f*(.) Analysis Va Vb Current labelling f(.) QC ≤ Q’C QP
Va Vb Previous labelling f’(.) Analysis Va Vb Va Vb Current labelling f(.) Partially Optimal f’’(.) Q’0 ≤ QC ≤ Q’C
Va Vb Previous labelling f’(.) Analysis Va Vb Va Vb Current labelling f(.) Partially Optimal f’’(.) QP- Q’0 ≥ QP - Q’C
Analysis Va Vb Va Vb Va Vb Current labelling f(.) Partially Optimal f’’(.) Local Optimal f’(.) QP- Q’0 ≤ 0 ≤ 0 QP - Q’C
Analysis Va Vb Va Vb Va Vb Current labelling f(.) Partially Optimal f’’(.) Local Optimal f’(.) QP- Q’0 ≤ 0 Take expectation over all intervals
QP ≤ 2 + max 2M , L’ L’ M Q* QP ≤ O(√M) Q* Analysis Truncated Linear Gupta and Tardos, 2000 L’ = M 4 L’ = √2M 2 + √2 Truncated Quadratic L’ = √M
Outline • Move Space • Graph Construction • Sketch of the Analysis • Results
Synthetic Data - Truncated Linear Energy Time (sec) Faster than TRW-S Comparable to Range Moves With LP Relaxation guarantees
Synthetic Data - Truncated Quadratic Energy Time (sec) Faster than TRW-S Comparable to Range Moves With LP Relaxation guarantees