140 likes | 160 Views
Learn about the concept of rolling motion in AP Physics C, including "rolling without slipping," speed, acceleration, and kinetic energy. Discover the relationship between pure translation and rotation, friction's role, and calculate work for objects rolling without slipping. Explore examples like a bowling ball and the comparison of a disk and hoop on an incline.
E N D
Rolling Motion of a Rigid Object AP Physics C Mrs. Coyle
For pure rolling motion there is “rolling without slipping”, so at point P vp =0. • All points instantaneously rotate about the point of contact between the object and the surface (P).
Speed and Acceleration of the CM of a Rolling Object vcm = ωR acm = α R
Red Line: Path of a particle on a rolling object (cycloid) Green line: Path of the center of mass of the rolling object
Rolling Motion: a combination of pure translation and pure rotation.
The Total Kinetic Energy of a Rolling Object is the sum of the rotational and the translational kinetic energy. K = ½ ICMω2 + ½ MvCM2
Note • Rolling is possible when there is friction between the surface and the rolling object. • The frictional force provides the torque to rotate the object.
Ex: Accelerated Rolling Motion Ki + Ui = Kf + U f Mgh = ½ ICM ω2 + ½ MvCM2 vcm = ωR There is no frictional work. Why not? Does friction cause a displacement at its point of action?
Ex: #52 A bowling ball (on a horizontal surface) has a mass M, radius R, and a moment of inertia of (2/5)MR2 . If it starts from rest, how much work must be done on it to set it rolling without slipping at a linear speed v? Express the work in terms of M and v.Ans: (7/10)Mv2
Ex: #54 • A uniform solid disk and a uniform hoop are placed side by side at the top of an incline of height h. If they are released from rest and roll without slipping, which object reaches the bottom first? Verify your answer by calculating their speeds when they reach the bottom in terms of h. • Ans: The disk, vdisk =(4gh/3)1/2 , vring =(gh)1/2