1 / 54

Modern State of Cosmology

Cherenkov Conference- 2004. Modern State of Cosmology. V . N . Lukash Astro Space Centre of Lebedev Physics Institute. Observational status Structure formations Initial conditions Cosmological parameters Degeneracies   h   cb , n S  ,  8 Minimal model and its extensions

katima
Download Presentation

Modern State of Cosmology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cherenkov Conference-2004 Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute

  2. Observational status • Structure formations • Initial conditions • Cosmological parameters • Degeneracies  hcb, nS , 8 • Minimal model and its extensions • Problems

  3. Cosmic Hubble parameter Tegmarket al., 2003

  4. Observational status 0.02

  5. Coincidence between two scales: LSS (DM) and CMB (DB)

  6. LSSandCMB scales , z < zeq: LSS : DM Keq-1 CMB : B  x Krec-1

  7. Message from the early Universe: Baryon asymmetry is related to dark matter

  8. Independent determination of initial and boundary conditions

  9. Theory of gravitational instability • Zero order (Hubble diagram) • First order (density perturbations spectrum) Cosmological model – in two functions

  10. fc , fb , fFU (late)  m X  Model IU (early)AS nSS AT nT LSS spectrum CMB spectrum  IU FU + ( T ) IU FU

  11. Data mapping in k-space data point : window spectrum  probability distribution in k space CMB : P(k)

  12.  104k Tegmark, Zaldarriaga, 2002

  13. Tegmark, Zaldarriaga, 2002

  14. Cosmological initial conditions

  15. Generation of density perturbations in the very early Universe • Seeds– quantum vacuum fluctuations of density (phonons) • Parametric amplification of density perturbations in the expanding Universe – spontaneous creation of phonons, k ~ kH~ 1 mm-1 • Stretching inhomogeneities on cosmological scales by inflation, k >> kH~ 1100 Мpc-1

  16. Lagrangian theory of q field(V.N.L., 1980): In conformal coordinates:

  17. Observational constraints on inflationary models

  18. V(): classification of potentials Large field inflation Small field inflation (hybrid)-inflation

  19. Models and observational quantities (T/S - nS)

  20. -inflation (=4) Е.V.Mikheeva, V.N.Lukash, 2004

  21. WMAP + SDSS r = -8nT T/S = 0.6 r 0.9 0.6 0.3 V()~1-(/*)2 M.Tegmark et al., 2003

  22. Chaotic inflation: m2 - solid grounds 4 - severe trouble • If nS>1 - -inflation nS<1- «chaotic» or «new» or … • Inflationary model will be recognized in the nearest future

  23. Minimal model 4 parametersof MM: (error bars <10%)

  24. A large number of observational points (~ 2000) can be fitted by only four parameters of MM

  25. Reionization puzzle QSO end of reionization: z~10 Evolution of star formation: flat out to z~6 Most distant galaxy: z~10 QSO: z=6.41 Two reionization epochs ? z~20 (massive stars) z~10 (normal stars, QSO)

  26. Arguments for >0 • Hubble diagram: SN Ia (correction for metallicity?) • Dynamics: ISW (galaxiesatz~0.5) • Structure: P(k)

  27. Reiss et al., 2002

  28. Riess et al., 2004

  29. N.Kardashev, ApJ 150, L135 (1967)

  30. Dynamical impact of vacuumcross-correlation between maps of galaxies and CMB

  31. Structure argument (solid!) Keq=aH~mh2 =mh(h/Mpc)   CMB LSS

  32. ... and counter-arguments • Weak lensing (m~1) • Problems of CDM: • absence of cusps in galaxy centres (stability of galaxy bars) • absence of substructure in galaxy halos (stability of spiral pattern in galaxy disks) • small number of low-massive galaxies • flat luminosity and correlation functions of galaxies

  33. Angular cross-correlation between distant QSOs and nearby clusters of galaxies (APM/SDSS) Myers et al., 2003

  34. Substructure in galaxy halo(simulations) ~r - (1, 3/2) Diemand et al., 2004

  35. Among best-fit models(WMAP & 2dF) m=1, =0 =0.2, c=0.7 H0= 45 km s-1 Mpc-1 ↓ contradiction: • local H0 (6070 km s-1 Mpc-1) (SZ, gravitational lenses: 50  20) • SN Ia • cluster evolution • Ly

  36. Degeneracies in cosmological parameter space (reason – bad data, region – 10 % of ММ): geometrical (mh2 ~ const, 0) tensor (nS ~ fb ) neutrino (m ~ f)

  37. Geometrical degeneracy(0=1.010.02) h05 = 0.7 T0 = 13.5 05/2 Gyrs

  38. Hubble constant and the age of the Universe vs tot Tegmarket al., 2003

  39. Tegmarket al., 2003

  40. If m<0.7 eV, then • z<zrec (3T  m: z  103 [m/0.7 eV]) • h2=  m/93 eV < 0.02  bh2 • f / m < 0.2 (for mh2 > 0.1) CMB ⇒ cbh2 m= cb+ , m(1- f)=const  cb (fixed byCMB)  + af = b (m+  = 1,a = cb , b = 1 - cb)

  41. + 0.5f = 0.65  0.1 Arhipova et al., 2002

  42. Novosyadlyj et al., 2000

  43. Cosmological parametersCMB  LSS

  44. Conclusions

  45. Breaking degeneracy between initial and boundary conditions in cosmology Stable prediction: nS 1,   0,   0.60.7 Best-fit model: f ~ fb ~ 10%, m ~ 0.4, h ~ 0.65 (MM: fb ~ 15%, m ~ 0.3, h~ 0.7) If m  0.3 , then  0, h  0.7 m > 0.3 ,   0.1, h < 0.7

  46. ??? m  0.04  0.4 eV (f<0.1: m <0.4 eV) early ionization(z~20) T/S  0.2 small C2, C3 distortions ~30, 200 high 2 the running parameter

  47. Unsolved fundamental problems: • Dark matter (multicomponent): b , c~m~ • Cosmological constant: ~M4=(10-3eV)4= standard model: M ~1 TeV GUT: M ~1013 GeV quantum gravity: M ~1019 GeV • Coincidence of СМВ andLSS scales (relation between baryon asymmetryand dark matter) • T/S → energy scale of inflation

More Related