330 likes | 437 Views
BRI1202-0725 z=4.7 HyLIRG (10 13 L o ) pair: Quasar host Obscured SMG SFR ~ 10 3 ; M H2 ~ 10 11. +. 4 ”. +. Salome ea. 2012. SMA [CII] 158um 334GHz, 20hrs. HST 814 Hu ea 96. Iono ea 2007. Wagg ea. [CII] in 1202-0725 . ALMA SV 20min, 16 ants . 334GHz. SMA 20hrs.
E N D
BRI1202-0725 z=4.7 • HyLIRG (1013Lo) pair: • Quasar host • Obscured SMG • SFR ~ 103; MH2 ~ 1011 + 4” + Salome ea. 2012 SMA [CII] 158um 334GHz, 20hrs HST 814 Hu ea 96 Iono ea 2007
Wagg ea [CII] in 1202-0725 ALMA SV 20min, 16 ants 334GHz SMA 20hrs
First Galaxies and Reionization with ALMA Chris Carilli (NRAO) ALMA First Science meeting, Puerto Varas, Chile (Dec 2012) • Introduction: reionization, first galaxies (z>5), and [CII] • ALMA Cycle 0: observations of galaxies within 1Gy of Big Bang • SMGs: clustered, massive galaxy formation at z ~ 5 • Quasar hosts: z = 6 to 7 • Future: • Redshifts of first galaxies • Constraints on f(HI)
History of the IGM ) Big Bang f(HI) ~ 0 Recombination z~1000 Universum incognitus Dark Ages f(HI) ~ 1 Reionization z~6-14 tuniv < 1Gyr • Last phase of cosmic evolution to be tested and explored • Cosmological benchmark: formation of first galaxies and quasars • F(HI) vs. z: HI 21cm experiments • Today’s focus: first galaxies with ALMA f(HI) ~ 10-5
Lower bound: Gunn-Peterson effect 6.4 • SDSS z~6 quasars • Resonant Lya scat. by IGM: Opaque (τ > 5) at z>6 => pushing into reionization? • F(HI) > 10-4 SDSS quasars Fan et al 2006 5.7
Focus: Fine Structure lines [CII] 158um (2P3/2 - 2P1/2) • Principal ISM gas coolant • Traces PDRs, WIM, and the CNM (Eion(C) = 11.3eV) • [CII] 10x more luminous than any other line at meter to FIR in spiral galaxies • z > 5 => redshift to mm bands
[CII]/FIR LMC • FIR < 1011 Lo: 0.003 +/- 1dex • FIR > 1011: large scatter (~ 2dex) • AGN-dominated: low • SF dominated: ‘MW’ • [CII] powerful tool for: • Gas dynamics (CNM – WIM) • Redshift determinations z>6 • Low metallicity: enhanced [CII]/FIR (lower dust attenuation => large UV heating zone) MW 11 Carilli & Walter 2013
Clustered, massive galaxy formation when tuniv< 1Gyr 10 • Massive galaxies form most stars early, and quickly (‘downsizing’): old galaxies z~3 => zform > 4 • HyLIRG (SMGs, quasar hosts): high-z tail (z>4) = early formation of large elliptical galaxies in dense environments in major, gas rich, merger driven starbursts • Gas consumption timescales short: Mgas/SFR ~ 107 yrs • Rapid enrichment of metals, dust
BRI1202-0725 z=4.7: Anatomy of very early massive galaxy formation SMG LAE1 Wagg, Carilli G3 2” G4 rms=0.1mJy QSO LAE2 • Two hyper-starbursts (obscured SMG and quasar host): SFR ~ 103 Mo/yr • Two ‘normal’ LAE: SFR ≤ 102 Mo/yr • All detected in [CII], three detected in dust continuum
SMG • [CII] in 1202: Imaging cool gas dynamics at z=4.7 • Quasar, SMG: Broad, strong lines • Tidal bridge across G3, as expected in gas-rich merger • Possible quasar outflow, or further tidal feature, toward G4 LAE1 Q LAE2
BRI1202: laboratory for early massive galaxy and SMBH formation -500km/s SMG 2” LAE1 Q LAE2 +500km/s • Tidal stream connecting hyper-starbursts: merger ‘smoking gun’ • SMG: rotating disk: Mdyn(5kpc) ~ 3.6e11 Mo (or compact merger?) • HyLIRG QSO host: outflow seen in [CII] and CO (‘feedback’) • LAE1: [CII] in tidal gas stream • LAE2: dust and [CII]
Other atomic FSL: physical diagnostics [NII] 205um line emission from SMG z=4.8 (3.6hrs) NII/CII = 0.043 +/- 0.008 ~ nearby spirals (0.02-0.07) => • ~ solar metalicity • ~ 50% of [CII] from CNM (Eion(N) = 14.5eV)? (talks: Stacey, Firkenhoff, Nagao) Nagao et al. 2012
Aztec 3: massive cluster formation at z=5.3 Riechers ea: Bure + JVLA • Most distant SMG: SFR ~ 1800, Mgas ~ 5e10 Mo • Most distant proto-cluster: 11 LBGs over ~ 1’; 5 w. zspec ~ 5.30
Aztec3: ALMA CII, Dust SMG; S300 = 5.6mJy 20mJy 300GHz rms=70uJy 10mJy Dusty SFG; S300 = 1.5mJy LBG 5mJy • Detect 2nd continuum sourcw, no HST => dust obscured star forming galaxy (450 Mo/yr) • Detect [CII] from SMG, DSFG, LBG
CII emission from ‘LBG group’ z=5.3 • S300 < 0.2mJy => SFR < 80 Mo/yr • [CII]/FIR (LBG) > 0.0023 • [CII]/FIR (SMG) = 0.001 LBG z=5.3 [CII] ALMA obs of SMGs z ~ 5: [CII] and dust during early massive galaxy formation • Delineate gas dynamics at sub-kpc resolution • FS line ratios provide physical diagnostics • Easy to detect [CII] emission from typical LAE/LBG at z~ 5: new window on galaxy formation
Pushing to edge of reionization: quasar host galaxies at z = 6 to 7 SDSS J1148+5251 z=6.42 • Why quasar hosts? • Rapidly increasing samples (~40) • Spectroscopic redshifts • Massive galaxies • Dust detections ~ 1/3 of sample: FIR ~ 1013 Lo; MD > 108 Mo => very early dust formation? • 11 CO detections: Mgas ~ few x1010 Mo • 2 [CII] detections (prior to ALMA) Host galaxy CO 3-2 VLA 1”=5.5kpc Walter ea
J1148 [CII] z=6.4: ‘Maximal star forming disk’ 1” PdBI, 0.3”res, 20hrs Walter ea. • [CII] size ~ 2 kpc => SFR/area ~ 1000 Mo yr-1 kpc-2 • Maximal starburst: (Thompson ea 2005) • Self-gravitating gas disk • Vertical disk support by radiation pressure on dust grains • ‘Eddington limited’ SFR/area ~ 1000 Mo yr-1 kpc-2 • eg. Arp 220 on 100pc scale, Orion < 1pc scale
ALMA Cycle 0: [CII] in z=6 quasar hosts Dust [CII] Vel • 1hr, 17ant, 300GHz, 0.5” res • 5/5 detected at high SNR in [CII] and dust • Dust and [CII] spatially resolved, sizes ~ 2-3kpc • Clear velocity gradients Wang ea
Gas dyn at z>6: J1319+0950 z=6.13 • Size= 3.5 x 1.7kpc • Vrot ~ 250 km/s • Mdyn ~ 5e10 Mo • MH2 ~ 3e10 (a/0.8) • => gas dominated, maximal starburst disk z=6.132 +300 km/s -200 km/s
Black hole-Bulge mass relation in early universe • Low z: MBH ~ 0.0014 Mbulge=> ‘causal relation between formation of SMBH and galaxies’ • High z quasars: • Mbulge from gas dynamics • MBH from line widths, LEdd • large scatter, but systematically lower bulge mass than expected by factor ~ 15 • Suggests black holes for before host galaxies? (Khandai et al. 2012) Mbulge Wang ea
Line profiles: CO vs [CII] • CO vs [CII]: can be substantially different line profiles => Different atomic vs. molecular gas dynamics • Problematic for fundamental constant evolution studies (Lentati)
Quasar outflows seen in [CII]: quasar mode feedback 1148+5259 z=6.4 Bure • Outflow velocities > 1000 km/s, sizes > 10kpc • Mass outflow rate ~ 3000 Mo/yr • Gas consumption timescale due to outflow < star formation • Direct observation of quasar-mode feedback • inhibit further star formation • Enrich local IGM Maiolino ea z=6.1 800 km/s Wang ea
J1120+0641: z=7.084 Most distant zspec Mortlock ea; Simcoe ea. • GP effect: damped profile of neutral IGM wipes-out Lya emission line • τIGM > 5 • DLA: NIGM(HI) ~ 4e20 cm2 • Suggests fIGM(HI) > 0.1 (vs. < 10-4 at z=6; Bolton ea.)
J1120+0641: [CII] and dust with Bure • [CII] and dust detected with Bure => • SFR ~ 300 Mo/yr • [CII]/FIR ~ 0.002 • very accurate host galaxy z=7.0842 • ISM of host galaxy substantially enriched Venemans ea
Extremely metal-poor gas just outside galaxy:[Z/H] < 10-4 solar • enriched ISM in host, but pristine IGM within 2Mpc • Highly inhomogeneous IGM as expected during reionization? Simcoe ea.
Pushing further into reionization: z~9 near-IR dropouts (Bouwens et al. 2012) • Drop-out technique: identifying galaxy candidates to z~9 • SFR ~ few to ten Mo/yr • Possibly correspond to the low mass galaxies that reionize the Universe (for fesc >0.2; C<10) • Difficulty: confirming redshifts Robertson & Ellis
z~9 (Bouwens et al. 2012) Critical need for [CII] redshifts for 1st galaxies z=7.1 quasar • zspec(near-IR) may be impossible: Lya damping wing of neutral IGM wipes out even broad quasar Lya emission line! • ALMA can detect [CII] from 5Mo/yr at z=7 in 1hr (5σ in 2 channels) • 8GHz BW => Δz ~ 0.3 at z=7 • Low Metalicities, but [CII]/FIR increases with decreasing metalicity!
Constraints on neutral fraction z~7: Quasar near zones • Accurate host galaxy redshift from [CII]: z=7.0842 • Quasar Lya spectrum => photons leaking down to z=7.041 • Time bounded Stromgren sphere ionized by quasar • Difference in zhost and zGP => • RNZ =2Mpc ~ [Lγ tQ/FHI]1/3 (1+z)-1 • [CII] and CO: key to determining accurate host galaxy redshifts
Quasar Near-Zones: 29 GP quasars at z=5.7 to 7.1 Carilli ea LUV R Lγ1/3 LUV • No correlation of UV luminosity with redshift • Correlation of RNZ with UV luminosity • Note: significant intrinsic scatter due to local environ., tq
z ≤ 6.4 z=7.1 Decreasing NZ size with z => significant increase neutral fraction of IGM from z ~ 5.7 to 7.1 [factor 4 NZ size => factor 64 f(HI)]
3.34 0.95 0.48 0.65 0.38Gyr CMBpol Q-DLA Gnedin & Fan model QNZ GP ALMA Band 5 [CII] • z>6 quasars => rapid change in IGM neutral fraction • ‘Cosmic phase transition’: z~7 to 10 critical for 1st galaxies • Band 5 is hypercritical to cover [CII] during reionization
Cosmic reionization and first galaxies with ALMA • Cool gas and dust: fuel for star formation, ISM physics… • [CII] key gas dynamical tracer: anatomy of mergers, rotation, masses… • [CII]: Key redshift determinant at z>7. Need band 5! • FSL: physical diagnostics • z>6 quasar spectra: powerful probe of f(HI) vs. z
Cycle 1: [CII] z>5 • Capak: Cosmos LBG • Ota: LAEs • Wang: quasar hosts • Ouchi: Lya blob, LAE • Momose: LAE • Venemans: quasar hosts • Berger: GRB • Gonzales: lensed LBG