560 likes | 898 Views
«О Пифагоре и его знаменитой теореме». Цель урока: Рассмотреть теорему Пифагора и показать ее применение при решении различных задач. Иоганн Кеплер. Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора…. Содержание:.
E N D
«О Пифагоре и его знаменитой теореме»
Цель урока:Рассмотреть теорему Пифагора и показать ее применение при решении различных задач.
Иоганн Кеплер Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора….
Содержание: • Пифагор – биография; • Карта личных связей; • Теорема Пифагора; • Доказательство теоремы • Применение теоремы • Подведение итогов. • Домашняя работа
Пифагор580 – 497 до н. э. «Числу все вещи подобны»
Родителями Пифагора были Мнесарх и Партенида с Самоса. Мнесарх был камнерезом (Диоген Лаэртский); по словам же Порфирия он был богатым купцом из Тира, получившим самосское гражданство за раздачу хлеба в неурожайный год. Первая версия предпочтительнее, так как Павсаний приводит генеалогию Пифагора по мужской линии от Гиппаса из пелопонесского Флиунта, бежавшего на Самос и ставшего прадедом Пифагора.
Партенида, позднее переименованная мужем в Пифаиду, происходила из знатного рода Анкея, основателя греческой колонии на Самосе. Рождение ребёнка будто бы предсказала Пифия в Дельфах, потому Пифагор и получил своё имя, которое значит «тот, о ком объявила Пифия». В частности, Пифия сообщила Мнесарху, что Пифагор принесет столько пользы и добра людям, сколько не приносил и не принесет в будущем никто другой. Поэтому, на радостях, Мнесарх дал жене новое имя Пифаида и дал имя ребенку Пифагор. Пифаида сопровождала мужа в его поездках, и Пифагор родился в Сидоне Финикийском (по Ямвлиху) примерно в 580 до н.э.
По словам античных авторов Пифагор встретился чуть ли не со всеми известными мудрецами той эпохи, греками, персами, халдеями, египтянами, впитал в себя всё накопленное человечеством знание. В популярной литературе иногда приписывают Пифагору Олимпийскую победу в боксе, путая Пифагора-философа с его тёзкой (Пифагором, сыном Кратета с Самоса), который одержал свою победу на 48-х Играх за 18 лет до рождения знаменитого философа. В юном возрасте Пифагор отправился в Египет, чтобы набраться мудрости и тайных знаний у египетских жрецов. Диоген и Порфирий пишут, что самосский тиран Поликрат снабдил Пифагора рекомендательным письмом к фараону Амасису, благодаря чему он был допущен к обучению и посвящён в таинства, запретные для прочих чужеземцев.
Ямвлих пишет, что Пифагор в 18-летнем возрасте покинул родной остров и, объехав мудрецов в разных краях света, добрался до Египта, где пробыл 22 года, пока его не увёл в Вавилон в числе пленников персидский царь Камбиз, завоевавший Египет в 525 до н.э.. В Вавилоне Пифагор пробыл ещё 12 лет, общаясь с магами, пока наконец не смог вернуться на Самос в 56-летнем возрасте, где соотечественники признали его мудрым человеком. У Пифагора была жена по имени Феано, сын Телавг и дочь. Жена Пифагора
Разногласия с тираном Поликратом вряд ли могли послужить причиной отъезда Пифагора, скорее ему требовалось возможность проповедовать свои идеи и, более того, претворять своё учение в жизнь, что затруднительно осуществить в Ионии и материковой Элладе, где жило много искушённых в вопросах философии и политики людей. Ямвлих сообщает: «Его философия распространилась, вся Эллада стала восхищаться им, и лучшие и мудрейшие приезжали к нему на Самос, желая слушать его учение. Сограждане, однако, принуждали его участвовать во всех посольствах и общественных делах. Пифагор чувствовал, как тяжело, подчиняясь законам отечества, одновременно заниматься философией, и видел, что все прежние философы прожили жизнь на чужбине. Обдумав всё это, отойдя от общественных дел и, как говорят некоторые, считая недостаточной невысокую оценку самосцами его учения, он уехал в Италию, считая своим отечеством страну, где больше способных к обучению людей.»
Пифагор поселился в греческой колонии Кротоне в Южной Италии, где нашёл много последователей. Их привлекала не только оккультная философия, которую он убедительно излагал, но и предписываемый им образ жизни с элементами здорового аскетизма и строгой морали. Он проповедовал нравственное облагораживание невежественного народа, достигнуть которого возможно там, где власть принадлежит касте мудрых и знающих людей, и которым народ повинуется в чём-то безоговорочно, как дети родителям, а в остальном сознательно, подчиняясь нравственному авторитету.
Пифагор впервые открыл математическое правило, которому подчиняется физическое явление, и показал тем самым, что между математикой и физикой существует фундаментальная взаимосвязь. Со времени этого открытия ученые стали заниматься поиском математических правил, которым, судя по всему, подчиняется каждый физический процесс в отдельности, и обнаружили, что числа возникают во всех явлениях природы.
Помимо изучения соотношений между числами Пифагора интересовала взаимосвязь между числами и природой. Он понимал, что природные явления подчиняются законам, а эти законы описываются математическими соотношениями. Одним из первых открытий Пифагора стало фундаментальное соотношение между гармонией в музыке и гармонией чисел.
Пифагор понял, что всюду, от гармонии в музыке до планетных орбит, скрыты числа, и это открытие позволило ему сформулировать афоризм: «Все сущее есть Число». Постигая смысл и значение математики, Пифагор разрабатывал язык, который позволил бы и ему самому, и другим описывать природу Вселенной. С тех пор каждое существенное продвижение в математике давало ученым словарь, необходимый для лучшего объяснения явлений в окружающем мире. Не будет преувеличением сказать, что успехи математики порождали коренные сдвиги в естествознании.
Из всех взаимосвязей между числами и природой, изученных членами пифагорейского братства, наиболее важным стало соотношение, которое ныне носит имя основателя братства. Теорема Пифагора дает нам соотношение, которое выполняется для всех прямоугольных треугольников и, следовательно, определяет прямой угол. В свою очередь, прямой угол определяет перпендикуляр, т.е. отношение вертикали к горизонтали, а в конечном счете — отношение между тремя измерениями нашего мира. Математика — через прямой угол — определяет самую структуру пространства, в котором мы живем. Это очень глубокая мысль.
Ученики Пифагора образовали своего рода религиозный орден, или братство посвящённых, состоящий из касты отобранных единомышленников, буквально обожествляющих своего учителя и основателя. Этот орден фактически пришёл в Кротоне к власти, однако из-за антипифагорейских настроений в конце VI в. до н. э. Пифагору пришлось удалиться в другую греческую колонию Метапонт, где он и умер. Почти 450 лет спустя во времена Цицерона (I в. до н. э.) в Метапонте как одну из достопримечательностей показывали склеп Пифагора. Символическая гробница Пифагора в Кротоне
Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Многим известен сонет Шамиссо: Пребудет вечной истина, как скоро Ее познает слабый человек! И ныне теорема Пифагора Верна, как и в его далекий век. Обильно было жертвоприношенье Богам от Пифагора. Сто быков Он отдал на закланье и сожженье За света луч, пришедший с облаков. Поэтому всегда с тех самых пор, Чуть истина рождается на свет, Быки ревут, ее почуяв ,вслед. Они не в силах свету помешать , А могут лишь закрыв глаза дрожать От страха, что вселил в них Пифагор.
Карта личных связей Ученики Испытавшие влияние Писавшие о Пифагоре Современники Поликрат VI век до н.э. Фалес 624-545 до н.э. Геродот 484-425 до н.э. Сократ 470-399 до н.э. Иоганн Кеплер 1571-1630 Гераклит VI-V века до н.э. Платон 427-347 до н.э. Леонардо да Винчи 1452-1519 Ямвлих 240-320 Альберт Эйнштейн 1879-1955 Евклид III век до н.э. Аристотель 384-322 до н.э.
Формулировки теоремы: Приведем различные формулировки теоремы Пифагора. В переводе с греческого, латинского и немецкого языков. -У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".
-Латинский перевод арабского текста Аннаирици (около 900 г. до н. э. ), сделанный Герхардом Клемонским (начало 12 в.), в переводе на русский гласит: "Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол". -В GeometriaCulmonensis (около 1400 г.) в переводе теорема читается так : "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу". -В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол".
Простейшее доказательство Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников , чтобы убедиться в справедливости теоремы. Например, для треугольника ABC : квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах,- по два. Теорема доказана.
Доказательства методом разложения Существует целый ряд доказательств теоремы Пифагора, в которых квадраты, построенные на катетах и на гипотенузе, разрезаются так, что каждой части квадрата ,построенного на гипотенузе, соответствует часть одного из квадратов, построенных на катетах. Во всех этих случаях для понимания доказательства достаточно одного взгляда на чертеж; рассуждение здесь может быть ограничено единственным словом: "Смотри!", как это делалось в сочинениях древних индусских математиков. Следует, однако, заметить, что на самом деле доказательство нельзя считать полным, пока мы не доказали равенства всех соответствующих друг другу частей. Это почти всегда довольно не трудно сделать, однако может (особенно при большом количестве частей) потребовать довольно продолжительной работы.
Доказательство Эпштейна Начнем с доказательства Эпштейна; его преимуществом является то, что здесь в качестве составных частей разложения фигурируют исключительно треугольники. Чтобы разобраться в чертеже, заметим, что прямая CD проведена перпендикулярно прямой EF. Разложение на треугольники можно сделать и более наглядным, чем на рисунке.
Доказательство Нильсена. На рисунке вспомогательные линии изменены по предложению Нильсена.
Доказательство Бетхера . На рисунке дано весьма наглядное разложение Бетхера
Доказательство Перигаля. В учебниках нередко встречается разложение указанное на рисунке (так называемое "колесо с лопастями"; это доказательство нашел Перигаль). Через центр O квадрата, построенного на большем катете, проводим прямые, параллельную и перпендикулярную гипотенузе. Соответствие частей фигуры хорошо видно из чертежа.
Доказательство Гутхейля. Изображенное на рисунке разложение принадлежит Гутхейлю; для него характерно наглядное расположение отдельных частей, что позволяет сразу увидеть, какие упрощения повлечет за собой случай равнобедренного прямоугольного треугольника.
Доказательство 9 века н.э. На рисунке квадраты, построенные на катетах, размещены ступенями один рядом с другим. Эту фигуру, которая встречается в доказательствах, датируемых не позднее, чем 9 столетием н. э., индусы называли "стулом невесты". Способ построения квадрата со стороной, равной гипотенузе, ясен из чертежа. Общая часть двух квадратов, построенных на катетах, и квадрата, построенного на гипотенузе, - неправильный заштрихованный пятиугольник 5. Присоединив к нему треугольники 1 и 2, получим оба квадрата, построенные на катетах; если же заменить треугольники 1 и 2 равными им треугольниками 3 и 4, то получим квадрат, построенный на гипотенузе. На рисунках ниже изображены два различных расположения близких к тому, которое дается на первом рисунке.
Доказательство методом дополнения Наряду с доказательствами методом сложения можно привести примеры доказательств при помощи вычитания, называемых также доказательствами методом дополнения. Общая идея таких доказательств заключается в следующем. От двух равных площадей нужно отнять равновеликие части так, чтобы в одном случае остались два квадрата, построенные на катетах, а в другом- квадрат, построенный на гипотенузе. Ведь если в равенствах В-А=С и В1-А1=С1часть А равновелика части А1, а часть Вравновелика В1, то части С и С1 также равновелики. Поясним этот метод на примере. На рис. к обычной пифагоровой фигуре приставлены сверху и снизу треугольники 2 и 3, равные исходному треугольнику 1. Прямая DG обязательно пройдет через C. Заметим теперь (далее мы это докажем), что шестиугольники DABGFE и CAJKHB равновелики. Если мы от первого из них отнимем треугольники 1 и 2, то останутся квадраты, построенные на катетах, а если от второго шестиугольника отнимем равные треугольники 1 и 3, то останется квадрат, построенный на гипотенузе. Отсюда вытекает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, построенных на катетах. Остается доказать, что наши шестиугольники равновелики. Заметим, что прямая DG делит верхний шестиугольник на равновеликие части; то же можно сказать о прямой CK и нижнем шестиугольнике. Повернем четырехугольник DABG, составляющий половину шестиугольника DABGFE, вокруг точки А по часовой стрелке на угол 90; тогда он совпадет с четырехугольником CAJK, составляющим половину шестиугольника CAJKHB. Поэтому шестиугольники DABGFE и CAJKHB равновелики.
Другое доказательство методом вычитания Познакомимся с другим доказательством методом вычитания. Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие: треугольники 1, 2, 3, 4; прямоугольник 5; прямоугольник 6 и квадрат 8; прямоугольник 7 и квадрат 9; Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на кататах. Этими частями будут: прямоугольники 6 и 7; прямоугольник 5; прямоугольник 1(заштрихован); прямоугольник 2(заштрихован); Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что: прямоугольник 5 равновелик самому себе; четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7; прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);; прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован);
Доказательство Евклида Это доказательство было приведено Евклидом в его "Началах". По свидетельству Прокла (Византия), оно придумано самим Евклидом. Доказательство Евклида приведено в предложении 47 первой книги "Начал". На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL - квадрату АСКС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе. В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними: FB = AB, BC = BD РFBC = d + РABC = РABD Но SABD = 1/2 S BJLD, так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично SFBC=1\2S ABFH (BF-общее основание, АВ-общая высота). Отсюда, учитывая, что SABD=SFBC, имеем SBJLD=SABFH. Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что SJCEL=SACKG. Итак, SABFH+SACKG= SBJLD+SJCEL= SBCED, что и требовалось доказать.
Упрощенное доказательство Евклида Как в доказательствах методом разложения, так и при доказательстве евклидового типа можно исходить из любого расположения квадратов. Иногда при этом удается достигнуть упрощений. Пусть квадрат,построенный на одном из катетов (на рисунке это квадрат,построенный на большем катете), расположен с той же стороны катета, что и сам треугольник. Тогда продолжение противоположной катету стороны этого квадрата проходит через вершину квадрата, построенного на гипотенузе. Доказательство в этом случае оказывается совсем простым, т. к. здесь достаточно сравнить площади интересующих нас фигур с площадью одного треугольника(он заштрихован) - площадь этого треугольника равна половине площади квадрата и одновременно половине площади прямоугольника
Доказательство Хоукинсa. Приведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого- трудно сказать. Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В . Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В). SCAA'=b²/2 SCBB'=a²/2 SA'AB'B=(a²+b²)/2 Треугольники A'В'А и A'В'В имеют общее основание с и высоты DA и DB, поэтому : SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2 Сравнивая два полученных выражения для площади, получим: a²+b²=c² Теорема доказана.
Доказательство Вальдхейма. Это доказательство также имеет вычислительный характер. Можно использовать рисунки для доказательства основанного на вычислении площадей двумя способами. Для того чтобы доказать теорему пользуясь первым рисунком достаточно только выразить площадь трапеции двумя путями. Sтрапеции=(a+b)²/2 Sтрапеции=a²b²+c²/2 Сравнивая правые части получим: a²+b²=c² Теорема доказана.
Доказательство основанное на теории подобия. В прямоугольном треугольника АВС проведем из вершины прямого угла высоту CD; тогда треугольник разобьется на два треугольника, также являющихся прямоугольными. Полученные треугольники будут подобны друг другу и исходному треугольнику. Это легко доказать, пользуясь первым признаком подобия(по двум углам). В самом деле, сразу видно что, кроме прямого угла, треугольники АВС и ACD имеют общий угол a, треугольники CBD и АВС - общий угол b. То, что малые треугольники также подобны друг другу, следует из того, что каждый из них подобен большому треугольнику. Впрочем, это можно установить и непосредственно.
Доказательство индийского математика Басхары: Доказательство изображено на рисунке. В пояснение к нему он написал только одну строчку: "Смотри!". Ученые считают, что он выражал площадь квадрата ,построенного на гипотенузе, как сумму площадей треугольников (4ab/2) и площадь квадрата (a-b)². Следовательно: c²=4ab/2+(a-b)² c=2ab+a²-2ab+b² c²=a²+b² Теорема доказана.
Луночки Гиппократа Для того, чтобы доказать теорему о гиппократовых луночках, докажем следующее предложение: Если на катетах и на гипотенузе прямоугольного треугольника построены какие угодно подобные между собой фигуры Fa, Fb, Fc, так, что катеты и гипотенуза являются сходственными отрезками этих фигур, то имеет место равенство: Fa+Fb=Fc. Для доказательства воспользуемся следующей теоремой из теории подобия: площади подобных многоугольников относятся как квадраты сходственных сторон. Если через Fa, Fb, Fc обозначить площади подобных многоугольников, построенных на катетах a, b и гипотенузе с прямоугольного треугольника, то согласно вспомогательной теореме можно написать: Fa/Fb/Fc=a²/b²/c². Эта пропорция означает,что можно найти число k (коэффицент пропорциональности) такое, что Fa=ka² Fb=kb² Fc=kc². . Умножив обе части равенства на k и принимая во внимание предыдущие равенства, получим: Fa+Fb=Fc. Если равенство Fa+Fb=Fc имеет место хотя бы для одной тройки подобных между собой многоугольников, построенных на катетах и на гипотенузе прямоугольного треугольника АВС так, что АС, ВС и АВ есть сходственные отрезки этих многоугольников, то ka²+kb²=kc² (где k имеет какое-то определенное значение, зависящее от выбора многоугольников, - нам совершенно не важно, какое именно). Но отсюда вытекает, что а²+b²=с², а это влечет за собой тот факт,что равенство Fa+Fb=Fc выполняется для любых построенных на сторонах прямоугольного треугольника подобных многоугольников, в частности, и для квадратов.
Познакомимся с одним интересным предложением, которое встречается во многих учебниках геометрии под названием теоремы о Гиппократовых луночках. Гиппократ Хиосский (вторая половина пятого века до н. э., Афины) занимался квадратурой луночек. Он называл луночкой часть плоскости, ограниченную двумя дугами окружностей. Наше предложение в том виде, как оно будет здесь сформулировано, не встречается у самого Гипократа, который нашел квадратуру только для некоторых луночек. Во всей общности теорему доказал араб Ибн Альхаитам: "Если на гипотенузе прямоугольного треугольника как на диаметре описать полуокружность, лежащую с той же стороны гипотенузы, что и сам треугольник, то она пройдет через вершину прямого угла." Эту теорему греки приписывали Фалесу Милетскому, но в действительности ее знали еще древние вавилоняне. Опишем две полуокружности на катетах так, как указано на рисунке, тогда получатся две луночки. Пусть Ка,Кв,Кс- площади полукругов, построенных на катетах и гипотенузе. Согласно теореме, рассмотренной ранее, имеем: Ка+Кb=Кс. Этот же результат можно получить, умножив обе части равенства А²+В²=С² на π/8. В самом деле, равенство (π/8)А+(π/8)В=(π/8)С означает, что площадь полукруга С диаметром с равна сумме площадей двух других полукругов, с диаметрами a и b. Если мы отнимем те же части(на рисунке они не заштрихованы )как от полукруга, построенного на гипотенузе, так и от полукругов, построенных на катетах, то, вследствие только что доказанной теоремы, получим, что сумма площадей луночек равна площади треугольника.
Векторное доказательство Гиппократ Хиосский (вторая половина пятого века до н. э., Афины) занимался квадратурой луночек. Он называл луночкой часть плоскости, ограниченную двумя дугами окружностей. Наше предложение в том виде, как оно будет здесь сформулировано, не встречается у самого Гипократа, который нашел квадратуру только для некоторых луночек. Во всей общности теорему доказал араб Ибн Альхаитам:"Если на гипотенузе прямоугольного треугольника как на диаметре описать полуокружность, лежащую с той же стороны гипотенузы, что и сам треугольник, то она пройдет через вершину прямого угла." Эту теорему греки приписывали Фалесу Милетскому, но в действительности ее знали еще древние вавилоняне.Опишем две полуокружности на катетах так, как указано на рисунке, тогда получатся две луночки. Пусть Ка,Кв,Кс- площади полукругов, построенных на катетах и гипотенузе. Согласно теореме, рассмотренной ранее, имеем:Ка+Кb=Кс.Этот же результат можно получить, умножив обе части равенстваА²+В²=С² на π/8. В самом деле, равенство(π/8)А+(π/8)В=(π/8)Созначает,что площадь полукруга С диаметром с равна сумме площадей двух других полукругов, с диаметрами a и b. Если мы отнимем те же части(на рисунке они не заштрихованы )как от полукруга,построенного на гипотенузе, так и от полукругов, построенных на катетах, то, вследствие только что доказанной теоремы, получим, что сумма площадей луночек равна площади треугольника.Векторноедок-воПусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство:b+c=aоткудаимеемc = a - bвозводя обе части в квадрат, получимc²=a²+b²-2abТак как a перпендикулярно b, то ab=0, откудаc²=a²+b² или c²=a²+b²Нами снова доказана теорема Пифагора.Если треугольник АВС - произвольный, то та же формула дает т. н. теорему косинусов, обобщающую теорему Пифагора.
Методы доказательства теоремы: • Простейшее доказательство; • Векторное доказательство; • Луночки Гиппократа; • Доказательство индийского математика Басхары; • Доказательство основанное на теории подобия; • Доказательство Вальдхейма; • Доказательство Хоукинса; • Доказательство Евклида; • Упрощенное доказательство Евклида; • Доказательство методом вычитания; • Доказательство методом дополнения; • Доказательство 9 века н.э.; • Доказательство Гутхейля; • Доказательство Перигаля; • Доказательство Бетхера; • Доказательство Нильсена; • Доказательство Эпштейна. • Доказательство методом разложения
В некоторых списках «Начал» Евклида теорема Пифагора называлась теоремой Нимфы, «теорема – бабочка», по-видимому из-за сходства чертежа с бабочкой, поскольку словом «нимфа» греки называли бабочек. Нимфами греки называли еще и невест, а также некоторых богинь. При переводе с греческого арабский переводчик, вероятно, не обратил внимания на чертеж и перевел слово «нимфа» не как «бабочка», а как «невеста». Так и появилось ласковое название знаменитой теоремы – «Теорема Невесты».
К теореме Пифагораего ученики составляли стишки, вроде: «Пифагоровы штаны во все стороны равны», А также рисовали такие карикатуры: Шарж из учебника XVI века.
Теорема: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов Дано: прямоугольный треугольник с катетами а ,в и гипотенузой с Доказать: c2 = a2 + b2 c b a b a b c c a c c a b a b
Доказательство: 1) Достроим треугольник до квадрата со стороной а + b, площадь этого квадрата равна S= (a+ b)2 2) С другой стороны, этот квадрат составлен из 4 равных прямоугольных треугольников, площадь каждого из которых и квадрата со стороной с, поэтому b a b c c a c c2 = a2 + b2 c a b a b
Значение теоремы Пифагора Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.
Применение теоремы. Рассмотрим примеры практического применения теоремы Пифагора. Не будем пытаться привести все примеры использования теоремы - это вряд ли было бы возможно. Область применения теоремы достаточно обширна и вообще не может быть указана с достаточной полнотой. Определим возможности, которые дает теорема Пифагора для вычисления длин отрезков некоторых фигур на плоскости.
Задача землемеров Землемеры Древнего Египта для построения прямого угла использо- вали бечёвку, разделён- ную узлами на 12 равных частей.
ПОЗНАВАТЕЛЬНАЯ ЗАДАЧА. И вот, в один прекрасный день в этом городе появляется на белом прекрасном коне молодой принц. Узнав, какое несчастье произошло с принцессой, молодой принц берется расколдовать ее. Для этого он измеряет длину от основания башни до окна, за которым скрывается принцесса. У него получается 30 шагов. Затем что-то прикидывает в уме и отходит на 40 шагов, поднимает голову и вдруг... башня озаряется светом и через мгновенье навстречу принцу выбегает еще более прекрасная принцесса...Как же принц догадался, что от башни надо отойти на 40 шагов?
Решение задач (по чертежам) Найти: АВ В 6 см С 8 см А АВ= 10 см.