220 likes | 340 Views
Equilibrium and Kinetics. Chapter 2. Fig. 2.1. Fig. 2.2. unstable. Activation barrier. metastable. stable. Otherwise Unstable Minimum Energy – STABLE EQUILIBRIUM Maximum Energy – UNSTABLE EQUILIBRIUM Global Minimum - Most STABLE Local Minimum - METASTABLE. Intensive Properties
E N D
Equilibrium and Kinetics Chapter 2
Fig. 2.2 unstable Activation barrier metastable stable
Otherwise UnstableMinimum Energy – STABLE EQUILIBRIUMMaximum Energy – UNSTABLE EQUILIBRIUMGlobal Minimum - Most STABLELocal Minimum - METASTABLE
Intensive Properties Pressure Temperature Extensive Properties Internal Energy E Enthalpy H = E + PV Eqn. (2.3)
Gibbs Free Energy (2.6) Condition for equilibrium ≡ minimization of G Local minimum ≡ metastable equilibrium Global minimum ≡ stable equilibrium
G = GfinalGinitial (2.7) G = 0 reversible change G < 0 irreversible or spontaneous change (2.8) G > 0 impossible
Atomic or statistical interpretation of entropy
Boltzmann’s Tomb Central Cemetery, Vienna, Austria
Boltzmann’s Epitaph (2.5) W is the number of microstates corresponding to a given macrostate
(2.9) N=16, n=8, W=12,870
Stirling’s Approximation (2.11) 100!=
(2.10) (2.12)
Thermal energy Average thermal energy per atom per mode of oscillation is kT Average thermal energy per mole of atoms per mode of oscillation is NkT=RT (2.13)
Maxwell-Boltzmann Distribution (2.14) Fraction of atoms having an energy E at temperature T
Svante Augustus Arrhenius 1859-1927 Nobel 1903 KINETICS (2.15)
ln (rate) Fig. 2.4
A + BC AB + C A + BC (ABC)* AB + C
(ABC)* Free Energy ΔG* A + BC AB + C Configuration
The three laws of thermodynamics First Law: You cannot win, you can only break even. Second Law: You can break even only at absolute zero. Third Law: You can’t reach absolute zero.